Copyright (c) 2024 mhamed hmamou, Ali Laghzal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Determination of Surface Parameters of Iron(III) Hydroxide Sorbent
Corresponding Author(s) : M. Hmamou
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
The surface layer parameters of iron(III) hydroxide were studied. The surface charge, the sorption of proton H+, hydroxyl OH– as a function of hydration time (TCT), the pH of the suspension solution and the sorbent concentration were presented. For this purpose, two methods were chosen: potentiometric mass titration (PMT) and potentiometric time titration (PTT). The concentrations suspensions used were 20, 40 and 60 g/L. The variations of surface charge with the time contact, Q = f(TCT) were examined for hydration time ranging from zero to 72 h. The isoelectric point (IEP) and point zero charge (PZC) were defined using the variations pH = f(TCT) resulting from protonation/deprotonating of surface sites >S–OH with derivative methods d(pH)/d(TCT) = f(pH) the values of PZC and IEP were found: PZC = 7.45 ± 0.1 and IEP = 7.65 ± 0.1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O.J. Ajala, J.O. Tijani, R.B. Salau, A.S. Abdulkareem and O.S. Aremu, Results Eng., 16, 100671 (2022); https://doi.org/10.1016/j.rineng.2022.100671
- L.C. Meza, P. Piotrowski, J. Farnan, T.L. Tasker, B. Xiong, B. Weggler, K. Murrell, F.L. Dorman, J.P. Vanden Heuvel and W.D. Burgos, Sci. Total Environ., 700, 134469 (2020); https://doi.org/10.1016/j.scitotenv.2019.134469
- P. Verlicchi, A. Galletti, M. Petrovic and D. Barceló, J. Hydrol., 389, 416 (2010); https://doi.org/10.1016/j.jhydrol.2010.06.005
- L. Dsikowitzky and J. Schwarzbauer, in eds.: E. Lichtfouse, D. Robert and J. Schwarzbauer, Organic Contaminants from Industrial Wastewaters: Identification, Toxicity and Fate in the Environment, In: Pollutant Diseases, Remediation and Recycling, Environmental Chemistry for a Sustainable World, Springer International Publishing Switzerland, vol. 4, pp. 45-101 (2013).
- A.M. Naguib, S.A. Abdel-Gawad and A.S. Mahmoud, Sci. Rep., 14, 15221 (2024); https://doi.org/10.1038/s41598-024-65162-6
- B.J. Singh, A. Chakraborty and R. Sehgal, J. Environ. Manag., 348, 119230 (2023); https://doi.org/10.1016/j.jenvman.2023.119230
- A.M. Meyer, C. Klein, E. Fünfrocken, R. Kautenburger and H.P. Beck, Sci. Total Environ., 651, 2323 (2019); https://doi.org/10.1016/j.scitotenv.2018.10.069
- C. Rose, A. Parker, B. Jefferson and E. Cartmell, Crit. Rev. Environ. Sci. Technol., 45, 1827 (2015); https://doi.org/10.1080/10643389.2014.1000761
- G. Zuri, A. Karanasiou and S. Lacorte, Environ. Res., 237, 116966 (2023); https://doi.org/10.1016/j.envres.2023.116966
- C. Zamora-Ledezma, D. Negrete-Bolagay, F. Figueroa, E. Zamora-Ledezma, M. Ni, F. Alexis and V.H. Guerrero, Environ. Technol. Innov., 22, 101504 (2021); https://doi.org/10.1016/j.eti.2021.101504
- A. Cristaldi, G. Oliveri Conti, S.L. Cosentino, G. Mauromicale, C. Copat, A. Grasso, P. Zuccarello, M. Fiore, C. Restuccia and M. Ferrante, Environ. Res., 185, 109427 (2020); https://doi.org/10.1016/j.envres.2020.109427
- K. Obaideen, N. Shehata, E.T. Sayed, M.A. Abdelkareem, M.S. Mahmoud and A.G. Olabi, Energy Nexus, 7, 100112 (2022); https://doi.org/10.1016/j.nexus.2022.100112
- M. Khajvand, A.K. Mostafazadeh, P. Drogui and R.D. Tyagi, Water Sci. Technol., 86, 909 (2022); https://doi.org/10.2166/wst.2022.226
- M. Ahmed, M.O. Mavukkandy, A. Giwa, M. Elektorowicz, E. Katsou, O. Khelifi, V. Naddeo and S.W. Hasan, npj Clean Water, 5, 12 (2022); https://doi.org/10.1038/s41545-022-00154-5
- K.R. Pagilla and L.W. Canter, J. Environ. Eng., 125, 243 (1999); https://doi.org/10.1061/(ASCE)0733-9372(1999)125:3(243)
- M Cerná, Environ. Monit. Assess., 34, 151 (1995); https://doi.org/10.1007/BF00546029
- G. Tiravanti, D. Petruzzelli and R. Passino, Water Sci. Technol., 36, 197 (1997); https://doi.org/10.2166/wst.1997.0518
- X. Zhou, T. Korenaga, T. Takahashi, T. Moriwake and S. Shinoda, Water Res., 27, 1049 (1993); https://doi.org/10.1016/0043-1354(93)90069-T
- B.A. Manning and S. Goldberg, Soil Sci. Soc. Am. J., 60, 121 (1996); https://doi.org/10.2136/sssaj1996.03615995006000010020x
- A.A. EL-Zahhara and N.S. Awwada, J. Environ. Chem. Eng., 4, 633 (2016); https://doi.org/10.1016/j.jece.2015.12.014
- K. Ellouzi, Ph.D. Thesis, Phosphates: Synthesis and Surface Complexation, Faculty of Sciences, Mohamed V University, Rabat, Morocco (2016).
- Z. Gandou, A. Nounah, B. Belhorma, J. Mater Environ. Sci., 6, 983 (2015).
- H. Khalil, F. E. Maarouf, M. Khalil, S. Saoiabi, S. Bouhlassa, A, Saoiabi, M. Hmamou and K. Azzaoui, Indones. J. Chem., 22, 965 (2022); https://doi.org/10.22146/ijc.72358
- M. Hmamou, F.E. Maarouf, B. Ammary and A. Bellaouchou, Indones. J. Chem., 21, 679 (2021); https://doi.org/10.22146/ijc.60634
- N.A. A. Qasem, R.H. Mohammed and D.U. Lawal, npj Clean Water, 4, 36 (2021); https://doi.org/10.1038/s41545-021-00127-0
- G.A. Waychunas, B.A. Rea, C.C. Fuller and J.A. Davis, Geochim. Cosmochim. Acta, 57, 2251 (2003); https://doi.org/10.1016/0016-7037(93)90567-G
- F.P. Van der Zee, Ph.D Thesis, Anaerobic Azo Dye Reduction, Wageningen University, Wageningen, The Netherlands (2002).
- P.B. Hernandez, J.G. Ibanez, J.J. Godinez-Ramirez and F. Almada-Calvo, Chem. Educ., 11, 267 (2006).
- A.S. Shatla, M. Landstorfer and H. Baltruschat, ChemElectroChem, 8, 1817 (2021); https://doi.org/10.1002/celc.202100316
- Y. Niu, W. Yu, S. Yang and Q. Wan, Sci. Rep., 14, 13521 (2024); https://doi.org/10.1038/s41598-024-64337-5
- F. Maarouf, S. Saoiabi, K. Azzaoui, C. Chrika, H. Khalil, S. Elkaouni, S. Lhimr, O. Boubker, B. Hammouti and S. Jodeh, BMC Chem., 15, 48 (2021); https://doi.org/10.1186/s13065-021-00774-x
- B.J. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Micro-fluidic Devices, Cambridge University Press, USA (2010).
- D.A. Dzombak and F.M.M Morel, Surface Complexation Modeling: Hydrous Ferric Oxide, John Wiley & Sons, USA (2002).
References
O.J. Ajala, J.O. Tijani, R.B. Salau, A.S. Abdulkareem and O.S. Aremu, Results Eng., 16, 100671 (2022); https://doi.org/10.1016/j.rineng.2022.100671
L.C. Meza, P. Piotrowski, J. Farnan, T.L. Tasker, B. Xiong, B. Weggler, K. Murrell, F.L. Dorman, J.P. Vanden Heuvel and W.D. Burgos, Sci. Total Environ., 700, 134469 (2020); https://doi.org/10.1016/j.scitotenv.2019.134469
P. Verlicchi, A. Galletti, M. Petrovic and D. Barceló, J. Hydrol., 389, 416 (2010); https://doi.org/10.1016/j.jhydrol.2010.06.005
L. Dsikowitzky and J. Schwarzbauer, in eds.: E. Lichtfouse, D. Robert and J. Schwarzbauer, Organic Contaminants from Industrial Wastewaters: Identification, Toxicity and Fate in the Environment, In: Pollutant Diseases, Remediation and Recycling, Environmental Chemistry for a Sustainable World, Springer International Publishing Switzerland, vol. 4, pp. 45-101 (2013).
A.M. Naguib, S.A. Abdel-Gawad and A.S. Mahmoud, Sci. Rep., 14, 15221 (2024); https://doi.org/10.1038/s41598-024-65162-6
B.J. Singh, A. Chakraborty and R. Sehgal, J. Environ. Manag., 348, 119230 (2023); https://doi.org/10.1016/j.jenvman.2023.119230
A.M. Meyer, C. Klein, E. Fünfrocken, R. Kautenburger and H.P. Beck, Sci. Total Environ., 651, 2323 (2019); https://doi.org/10.1016/j.scitotenv.2018.10.069
C. Rose, A. Parker, B. Jefferson and E. Cartmell, Crit. Rev. Environ. Sci. Technol., 45, 1827 (2015); https://doi.org/10.1080/10643389.2014.1000761
G. Zuri, A. Karanasiou and S. Lacorte, Environ. Res., 237, 116966 (2023); https://doi.org/10.1016/j.envres.2023.116966
C. Zamora-Ledezma, D. Negrete-Bolagay, F. Figueroa, E. Zamora-Ledezma, M. Ni, F. Alexis and V.H. Guerrero, Environ. Technol. Innov., 22, 101504 (2021); https://doi.org/10.1016/j.eti.2021.101504
A. Cristaldi, G. Oliveri Conti, S.L. Cosentino, G. Mauromicale, C. Copat, A. Grasso, P. Zuccarello, M. Fiore, C. Restuccia and M. Ferrante, Environ. Res., 185, 109427 (2020); https://doi.org/10.1016/j.envres.2020.109427
K. Obaideen, N. Shehata, E.T. Sayed, M.A. Abdelkareem, M.S. Mahmoud and A.G. Olabi, Energy Nexus, 7, 100112 (2022); https://doi.org/10.1016/j.nexus.2022.100112
M. Khajvand, A.K. Mostafazadeh, P. Drogui and R.D. Tyagi, Water Sci. Technol., 86, 909 (2022); https://doi.org/10.2166/wst.2022.226
M. Ahmed, M.O. Mavukkandy, A. Giwa, M. Elektorowicz, E. Katsou, O. Khelifi, V. Naddeo and S.W. Hasan, npj Clean Water, 5, 12 (2022); https://doi.org/10.1038/s41545-022-00154-5
K.R. Pagilla and L.W. Canter, J. Environ. Eng., 125, 243 (1999); https://doi.org/10.1061/(ASCE)0733-9372(1999)125:3(243)
M Cerná, Environ. Monit. Assess., 34, 151 (1995); https://doi.org/10.1007/BF00546029
G. Tiravanti, D. Petruzzelli and R. Passino, Water Sci. Technol., 36, 197 (1997); https://doi.org/10.2166/wst.1997.0518
X. Zhou, T. Korenaga, T. Takahashi, T. Moriwake and S. Shinoda, Water Res., 27, 1049 (1993); https://doi.org/10.1016/0043-1354(93)90069-T
B.A. Manning and S. Goldberg, Soil Sci. Soc. Am. J., 60, 121 (1996); https://doi.org/10.2136/sssaj1996.03615995006000010020x
A.A. EL-Zahhara and N.S. Awwada, J. Environ. Chem. Eng., 4, 633 (2016); https://doi.org/10.1016/j.jece.2015.12.014
K. Ellouzi, Ph.D. Thesis, Phosphates: Synthesis and Surface Complexation, Faculty of Sciences, Mohamed V University, Rabat, Morocco (2016).
Z. Gandou, A. Nounah, B. Belhorma, J. Mater Environ. Sci., 6, 983 (2015).
H. Khalil, F. E. Maarouf, M. Khalil, S. Saoiabi, S. Bouhlassa, A, Saoiabi, M. Hmamou and K. Azzaoui, Indones. J. Chem., 22, 965 (2022); https://doi.org/10.22146/ijc.72358
M. Hmamou, F.E. Maarouf, B. Ammary and A. Bellaouchou, Indones. J. Chem., 21, 679 (2021); https://doi.org/10.22146/ijc.60634
N.A. A. Qasem, R.H. Mohammed and D.U. Lawal, npj Clean Water, 4, 36 (2021); https://doi.org/10.1038/s41545-021-00127-0
G.A. Waychunas, B.A. Rea, C.C. Fuller and J.A. Davis, Geochim. Cosmochim. Acta, 57, 2251 (2003); https://doi.org/10.1016/0016-7037(93)90567-G
F.P. Van der Zee, Ph.D Thesis, Anaerobic Azo Dye Reduction, Wageningen University, Wageningen, The Netherlands (2002).
P.B. Hernandez, J.G. Ibanez, J.J. Godinez-Ramirez and F. Almada-Calvo, Chem. Educ., 11, 267 (2006).
A.S. Shatla, M. Landstorfer and H. Baltruschat, ChemElectroChem, 8, 1817 (2021); https://doi.org/10.1002/celc.202100316
Y. Niu, W. Yu, S. Yang and Q. Wan, Sci. Rep., 14, 13521 (2024); https://doi.org/10.1038/s41598-024-64337-5
F. Maarouf, S. Saoiabi, K. Azzaoui, C. Chrika, H. Khalil, S. Elkaouni, S. Lhimr, O. Boubker, B. Hammouti and S. Jodeh, BMC Chem., 15, 48 (2021); https://doi.org/10.1186/s13065-021-00774-x
B.J. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Micro-fluidic Devices, Cambridge University Press, USA (2010).
D.A. Dzombak and F.M.M Morel, Surface Complexation Modeling: Hydrous Ferric Oxide, John Wiley & Sons, USA (2002).