Copyright (c) 2023 TORATANE MUNEGUMI
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermal Synthesis of Polypeptides from N-t-Butyloxycarbonyltripeptide Derivatives without Reactive Side Chains
Corresponding Author(s) : T. MUNEGUMI
Asian Journal of Chemistry,
Vol. 35 No. 11 (2023): Vol 35 Issue 11, 2023
Abstract
The thermal reactions of N-t-butyloxycarbonyl-aspartic acid (Boc-Asp-OH) and some N-t-butyloxycarbonyl derivatives of peptides in which the C-terminal is an aspartic residue as a reactive residue in Boc-Gly-Gly-L-Asp-OH are known. The two carboxy groups at C- zerminal are believed to form an anhydride or give peptide bonds directly. This research reports the thermal reactions of N-Boc-tripeptide derivatives such as Boc-Pro-Pro-Gly-OH, Boc-Pro-Pro-Gly-NH2, Boc-Pro-Pro-Gly-OCH3 and Boc-Ala- Ala-Ala-OH with a carboxy group at C-terminal. Thermal reactions were carried out at a constant temperature near their melting points for 1 to 24 h to afford polypeptides whose average molecular weight reached 2,500 Da.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Greenberg, L. Fishman and M. Levy, Biochemistry, 3, 1826 (1964); https://doi.org/10.1021/bi00900a005
- R. Sakai, S. Ikeda and T. Isemura, Bull. Chem. Soc. Jpn., 40, 2890 (1967); https://doi.org/10.1246/bcsj.40.2890
- S. Sakakibara, Y. Kishida, Y. Kikuchi, R. Sakai and K. Kakiuchi, Bull. Chem. Soc. Jpn., 41, 1273 (1968); https://doi.org/10.1246/bcsj.41.1273
- W.R. Gray, L.B. Sandberg and J.A. Foster, Nature, 246, 461 (1973); https://doi.org/10.1038/246461a0
- S. Sumiyoshi, K. Suyama, N. Tanaka, T. Andoh, K. Tomohara, A. Nagata, S. Taniguchi, I. Maeda and T. Nose, Sci. Rep., 12, 19414 (2022); https://doi.org/10.1038/s41598-022-23940-0
- J. Ozsvar, C. Yang, S.A. Cain, C. Baldock, A. Tarakanova and A.S. Weiss, Front. Bioeng. Biotechnol., 9, 643110 (2021); https://doi.org/10.3389/fbioe.2021.643110
- Z. Chen, Q. Zhang, H. Li, Q. Wei, X. Zhao and F. Chen, Bioact. Mater., 6, 589 (2021); https://doi.org/10.1016/j.bioactmat.2020.09.003
- R.E. Lyons, D.C.C. Wong, M. Kim, N. Lekieffre, M.G. Huson, T. Vuocolo, D.J. Merritt, K.M. Nairn, D.M. Dudek, M.L. Colgrave and C.M. Elvin, Insect Biochem. Mol. Biol., 41, 881 (2011); https://doi.org/10.1016/j.ibmb.2011.08.002
- O. Hakimi, D.P. Knight, F. Vollrath and P. Vadgama, Composites B Eng., 38, 324 (2007); https://doi.org/10.1016/j.compositesb.2006.06.012
- D.J. Perry, D. Bittencourt, J. Siltberg-Liberles, E.L. Rech and R.V. Lewis, Biomacromolecules, 11, 3000 (2010); https://doi.org/10.1021/bm1007585
- S. Clements, H. Mehansho and D.M. Carlson, J. Biol. Chem., 260, 13471 (1985); https://doi.org/10.1016/S0021-9258(17)38745-8
- K. Shiba and T. Minamisawa, Biomacromolecules, 8, 2659 (2007); https://doi.org/10.1021/bm700652b
- D. Jiang, C. Yao, N. Hu and Y. Liu, Molecules, 26, 6207 (2021); https://doi.org/10.3390/molecules26206207
- H. Zhu, E. Sepulveda, M.D. Hartmann, M. Kogenaru, A. Ursinus, E. Sulz, R. Albrecht, M. Coles, J. Martin and A.N. Lupas, eLife, 5, 16761 (2016); https://doi.org/10.7554/eLife.16761
- R.S. Rapaka, K. Okamoto and D.W. Urry, Int. J. Pept. Protein Res., 11, 109 (1978); https://doi.org/10.1111/j.1399-3011.1978.tb02830.x
- R.S. Rapaka and D.W. Urry, Int. J. Pept. Protein Res., 11, 97 (1978); https://doi.org/10.1111/j.1399-3011.1978.tb02829.x
- J.H. Johns, ed. by B. Weinstein, Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, Marcel Dekker Inc., New York, vol. 4, pp. 23-63 (1977).
- R.S. Farmer and K.L. Kiick, Biomacromolecules, 6, 1531 (2005); https://doi.org/10.1021/bm049216+
- I.F. Eggen, F.T. Bakelaar, A. Petersen, P.B.W. Ten Kortenaar, N.H.S. Ankone, H.E.J.M. Bijsterveld, G.H.L. Bours, F.E.L. Bellaj, M.J. Hartsuiker, G.J. Kuiper and E.J.M. Ter Voert, J. Pept. Sci., 11, 633 (2005); https://doi.org/10.1002/psc.670
- B. Lewandowski, G. De Bo, J.W. Ward, M. Papmeyer, S. Kuschel, M.J. Aldegunde, P.M.E. Gramlich, D. Heckmann, S.M. Goldup, D.M. D’Souza, A.E. Fernandes and D.A. Leigh, Science, 339, 189 (2013); https://doi.org/10.1126/science.1229753
- Y. Imanishi, Pure Appl. Chem., 53, 715 (1981); https://doi.org/10.1351/pac198153030715
- R. Nyfeler, Peptide Synthesis via Fragment Condensation, Peptide Synthesis Protocols, In: Methods in Molecular Biology, Springer Nature, vol. 35, pp. 303-316 (1995).
- N. Mihala, J. Bódi, Á. Gömöry and H. Süli-Vargha, J. Pept. Sci., 7, 565 (2001); https://doi.org/10.1002/psc.352
- A. Vegotsky, K. Harada and S.W. Fox, J. Am. Chem. Soc., 80, 3361 (1958); https://doi.org/10.1021/ja01546a042
- T. Munegumi, Y.-Q. Meng and K. Harada, Chem. Lett., 17, 1643 (1988); https://doi.org/10.1246/cl.1988.1643
- T. Munegumi and K. Harada, Peptide Chem., 1990, 75 (1991).
- T. Munegumi, T. Yamada, Y.-Q. Meng and K. Harada, Peptide Chem., 1991, 179 (1992).
- T. Munegumi, K. Kawashima and K. Aramaki, Peptide Chem., 1992, 137 (1993).
- T. Munegumi, Y.-Q. Meng and K. Harada, Asian J. Chem., 26, 4716 (2014); https://doi.org/10.14233/ajchem.2014.16185
- T. Munegumi, K. Akao, Y. Kawatu, T. Yamada and K. Harada, Asian J. Chem., 26, 6541 (2014); https://doi.org/10.14233/ajchem.2014.16493
- T. Munegumi and T. Yamada, Int. J. Polym. Sci., 2017, 8364710 (2017); https://doi.org/10.1155/2017/8364710
- G.W. Anderson and A.C. McGregor, J. Am. Chem. Soc., 79, 6180 (1957); https://doi.org/10.1021/ja01580a020
- G.W. Anderson, J.E. Zimmerman and F.M. Callahan, J. Am. Chem. Soc., 86, 1839 (1964); https://doi.org/10.1021/ja01063a037
References
J. Greenberg, L. Fishman and M. Levy, Biochemistry, 3, 1826 (1964); https://doi.org/10.1021/bi00900a005
R. Sakai, S. Ikeda and T. Isemura, Bull. Chem. Soc. Jpn., 40, 2890 (1967); https://doi.org/10.1246/bcsj.40.2890
S. Sakakibara, Y. Kishida, Y. Kikuchi, R. Sakai and K. Kakiuchi, Bull. Chem. Soc. Jpn., 41, 1273 (1968); https://doi.org/10.1246/bcsj.41.1273
W.R. Gray, L.B. Sandberg and J.A. Foster, Nature, 246, 461 (1973); https://doi.org/10.1038/246461a0
S. Sumiyoshi, K. Suyama, N. Tanaka, T. Andoh, K. Tomohara, A. Nagata, S. Taniguchi, I. Maeda and T. Nose, Sci. Rep., 12, 19414 (2022); https://doi.org/10.1038/s41598-022-23940-0
J. Ozsvar, C. Yang, S.A. Cain, C. Baldock, A. Tarakanova and A.S. Weiss, Front. Bioeng. Biotechnol., 9, 643110 (2021); https://doi.org/10.3389/fbioe.2021.643110
Z. Chen, Q. Zhang, H. Li, Q. Wei, X. Zhao and F. Chen, Bioact. Mater., 6, 589 (2021); https://doi.org/10.1016/j.bioactmat.2020.09.003
R.E. Lyons, D.C.C. Wong, M. Kim, N. Lekieffre, M.G. Huson, T. Vuocolo, D.J. Merritt, K.M. Nairn, D.M. Dudek, M.L. Colgrave and C.M. Elvin, Insect Biochem. Mol. Biol., 41, 881 (2011); https://doi.org/10.1016/j.ibmb.2011.08.002
O. Hakimi, D.P. Knight, F. Vollrath and P. Vadgama, Composites B Eng., 38, 324 (2007); https://doi.org/10.1016/j.compositesb.2006.06.012
D.J. Perry, D. Bittencourt, J. Siltberg-Liberles, E.L. Rech and R.V. Lewis, Biomacromolecules, 11, 3000 (2010); https://doi.org/10.1021/bm1007585
S. Clements, H. Mehansho and D.M. Carlson, J. Biol. Chem., 260, 13471 (1985); https://doi.org/10.1016/S0021-9258(17)38745-8
K. Shiba and T. Minamisawa, Biomacromolecules, 8, 2659 (2007); https://doi.org/10.1021/bm700652b
D. Jiang, C. Yao, N. Hu and Y. Liu, Molecules, 26, 6207 (2021); https://doi.org/10.3390/molecules26206207
H. Zhu, E. Sepulveda, M.D. Hartmann, M. Kogenaru, A. Ursinus, E. Sulz, R. Albrecht, M. Coles, J. Martin and A.N. Lupas, eLife, 5, 16761 (2016); https://doi.org/10.7554/eLife.16761
R.S. Rapaka, K. Okamoto and D.W. Urry, Int. J. Pept. Protein Res., 11, 109 (1978); https://doi.org/10.1111/j.1399-3011.1978.tb02830.x
R.S. Rapaka and D.W. Urry, Int. J. Pept. Protein Res., 11, 97 (1978); https://doi.org/10.1111/j.1399-3011.1978.tb02829.x
J.H. Johns, ed. by B. Weinstein, Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, Marcel Dekker Inc., New York, vol. 4, pp. 23-63 (1977).
R.S. Farmer and K.L. Kiick, Biomacromolecules, 6, 1531 (2005); https://doi.org/10.1021/bm049216+
I.F. Eggen, F.T. Bakelaar, A. Petersen, P.B.W. Ten Kortenaar, N.H.S. Ankone, H.E.J.M. Bijsterveld, G.H.L. Bours, F.E.L. Bellaj, M.J. Hartsuiker, G.J. Kuiper and E.J.M. Ter Voert, J. Pept. Sci., 11, 633 (2005); https://doi.org/10.1002/psc.670
B. Lewandowski, G. De Bo, J.W. Ward, M. Papmeyer, S. Kuschel, M.J. Aldegunde, P.M.E. Gramlich, D. Heckmann, S.M. Goldup, D.M. D’Souza, A.E. Fernandes and D.A. Leigh, Science, 339, 189 (2013); https://doi.org/10.1126/science.1229753
Y. Imanishi, Pure Appl. Chem., 53, 715 (1981); https://doi.org/10.1351/pac198153030715
R. Nyfeler, Peptide Synthesis via Fragment Condensation, Peptide Synthesis Protocols, In: Methods in Molecular Biology, Springer Nature, vol. 35, pp. 303-316 (1995).
N. Mihala, J. Bódi, Á. Gömöry and H. Süli-Vargha, J. Pept. Sci., 7, 565 (2001); https://doi.org/10.1002/psc.352
A. Vegotsky, K. Harada and S.W. Fox, J. Am. Chem. Soc., 80, 3361 (1958); https://doi.org/10.1021/ja01546a042
T. Munegumi, Y.-Q. Meng and K. Harada, Chem. Lett., 17, 1643 (1988); https://doi.org/10.1246/cl.1988.1643
T. Munegumi and K. Harada, Peptide Chem., 1990, 75 (1991).
T. Munegumi, T. Yamada, Y.-Q. Meng and K. Harada, Peptide Chem., 1991, 179 (1992).
T. Munegumi, K. Kawashima and K. Aramaki, Peptide Chem., 1992, 137 (1993).
T. Munegumi, Y.-Q. Meng and K. Harada, Asian J. Chem., 26, 4716 (2014); https://doi.org/10.14233/ajchem.2014.16185
T. Munegumi, K. Akao, Y. Kawatu, T. Yamada and K. Harada, Asian J. Chem., 26, 6541 (2014); https://doi.org/10.14233/ajchem.2014.16493
T. Munegumi and T. Yamada, Int. J. Polym. Sci., 2017, 8364710 (2017); https://doi.org/10.1155/2017/8364710
G.W. Anderson and A.C. McGregor, J. Am. Chem. Soc., 79, 6180 (1957); https://doi.org/10.1021/ja01580a020
G.W. Anderson, J.E. Zimmerman and F.M. Callahan, J. Am. Chem. Soc., 86, 1839 (1964); https://doi.org/10.1021/ja01063a037