Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Direct Electrochemistry and Electrocatalysis of Hemoglobin Immobilized on Eggshell Membrane Modified Glassy Carbon Electrode
Corresponding Author(s) : Liangwei Du
Asian Journal of Chemistry,
Vol. 27 No. 1 (2015): Vol 27 Issue 1
Abstract
Eggshell membrane is a kind of naturally occurring organic material, which can be exploited as protein immobilization matrix. In this paper, eggshell membrane was effectively attached onto the surface of support substrates such as glass slide and glassy carbon electrode. Scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy were applied to characterize the supported eggshell membrane. Hemoglobin was immobilized in eggshell membrane and direct electron transfer was realized between protein and eggshell membrane modified electrode. Outer shell membrane could effectively facilitate direct electrochemistry of hemoglobin compared with the whole eggshell membrane. A pair of well-defined redox peaks of hemoglobin was obtained at outer shell membrane modified electrode. Hemoglobin immobilized in outer shell membrane showed a surface-controlled electrochemical process. Hemoglobin could still retain its catalytic activity for electrochemical reduction of O2 and H2O2. It is expected that eggshell membrane may find more potential applications in biosensors and biocatalysis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Zhang, X. Jiang, E. Wang and S. Dong, Biosens. Bioelectron., 21, 337 (2005); doi:10.1016/j.bios.2004.10.021.
- X. Lu, J. Hu, X. Yao, Z. Wang and J. Li, Biomacromolecules, 7, 975 (2006); doi:10.1021/bm050933t.
- J.F. Rusling, Acc. Chem. Res., 31, 363 (1998); doi:10.1021/ar970254y.
- X. Han, W. Huang, J. Jia, S. Dong and E. Wang, Biosens. Bioelectron., 17, 741 (2002); doi:10.1016/S0956-5663(02)00052-0.
- Q. Lu, J. Xu and S. Hu, Chem. Commun., 2860 (2006); doi:10.1039/b606429a.
- J. Qian, Y. Liu, H. Liu, T. Yu and J. Deng, Biosens. Bioelectron., 12, 1213 (1997); doi:10.1016/S0956-5663(97)00056-0.
- Y. Wu, Q. Shen and S. Hu, Anal. Chim. Acta, 558, 179 (2006); doi:10.1016/j.aca.2005.11.031.
- T. Kitajima, H. Terai and Y. Ito, Biomaterials, 28, 1989 (2007); doi:10.1016/j.biomaterials.2006.12.022.
- S. Zong, Y. Cao, Y. Zhou and H. Ju, Langmuir, 22, 8915 (2006); doi:10.1021/la060930h.
- H. Huang, P. He, N. Hu and Y. Zeng, Bioelectrochemistry, 61, 29 (2003); doi:10.1016/S1567-5394(03)00057-4.
- Y. Li, H. Liu and D. Pang, J. Electroanal. Chem., 574, 23 (2004); doi:10.1016/j.jelechem.2004.07.011.
- A. Reischwitz, K.D. Reh and K. Buchholz, Enzyme Microb. Technol., 17, 457 (1995); doi:10.1016/0141-0229(94)00091-5.
- L. Caseli, J.D.S. dos Santos Jr., M. Foschini, D. Goncalves and J.O.N. Oliveira Jr., J. Colloid Interface Sci., 303, 326 (2006); doi:10.1016/j.jcis.2006.07.013.
- H. Huang, N. Hu, Y. Zeng and G. Zhou, Anal. Biochem., 308, 141 (2002); doi:10.1016/S0003-2697(02)00242-7.
- N.W. Fadnavis and K. Koteshwar, Biotechnol. Prog., 15, 98 (1999); doi:10.1021/bp980117f.
- H. Yao, N. Li, J. Xu and J. Zhu, Talanta, 71, 550 (2007); doi:10.1016/j.talanta.2006.04.025.
- Z. Wu, B. Wang, Z. Cheng, X. Yang, S. Dong and E. Wang, Biosens. Bioelectron., 16, 47 (2001); doi:10.1016/S0956-5663(00)00132-9.
- W. Zhang and G. Li, Anal. Sci., 20, 603 (2004); doi:10.2116/analsci.20.603.
- F.W. Scheller, N. Bistolas, S. Liu, M. Jänchen, M. Katterle and U. Wollenberger, Adv. Colloid Interf. Sci., 116, 111 (2005); doi:10.1016/j.cis.2005.05.006.
- Y. Wu and S. Hu, Mikrochim. Acta, 159, 1 (2007); doi:10.1007/s00604-007-0749-4.
- C. Fan, G. Li, J. Zhu and D. Zhu, Anal. Chim. Acta, 423, 95 (2000); doi:10.1016/S0003-2670(00)01093-X.
- Y. Zhou, Z. Li, N. Hu, Y. Zeng and J.F. Rusling, Langmuir, 18, 8573 (2002); doi:10.1021/la026120x.
- P. He and N. Hu, J. Phys. Chem. B, 108, 13144 (2004); doi:10.1021/jp049974u.
- J. Feng, J. Xu and H. Chen, Biosens. Bioelectron., 22, 1618 (2007); doi:10.1016/j.bios.2006.07.022.
- Z. Dai, S. Liu, H. Ju and H. Chen, Biosens. Bioelectron., 19, 861 (2004); doi:10.1016/j.bios.2003.08.024.
- J. Li, J. Tang, L. Zhou, X. Han and H. Liu, Bioelectrochemistry, 86, 60 (2012); doi:10.1016/j.bioelechem.2012.02.002.
- M. Takiguchi, K. Igarashi, M. Azuma and H. Ooshima, Cryst. Growth Des., 6, 2754 (2006); doi:10.1021/cg0604576.
- D. Yang, L. Qi and J. Ma, Adv. Mater., 14, 1543 (2002); doi:10.1002/1521-4095(20021104)14:21<1543::AID-ADMA1543>3.0.CO;2-B.
- P.K. Ajikumar, R. Lakshminarayanan and S. Valiyaveettil, Cryst. Growth Des., 4, 331 (2004); doi:10.1021/cg034128e.
- W.T. Tsai, J. Yang, C. Lai, Y. Cheng, C. Lin and C.W. Yeh, Bioresour. Technol., 97, 488 (2006); doi:10.1016/j.biortech.2005.02.050.
- M.M.F. Choi, W.S.H. Pang, X. Wu and D. Xiao, Analyst, 126, 1558 (2001); doi:10.1039/b103205b.
- Y. Zhang, G. Wen, Y. Zhou, S. Shuang, C. Dong and M.M.F. Choi, Biosens. Bioelectron., 22, 1791 (2007); doi:10.1016/j.bios.2006.08.038.
- Z. Wu, J. Tang, Z. Cheng, X. Yang and E. Wang, Anal. Chem., 72, 6030 (2000); doi:10.1021/ac000764x.
- H. Chen, Y. Wang, Y. Liu, Y. Wang, L. Qi and S. Dong, Electrochem. Commun., 9, 469 (2007); doi:10.1016/j.elecom.2006.10.019.
- P. Diao, D. Jiang, X. Cui, D. Gu, R. Tong and B. Zhong, Bioelectrochem. Bioenerg., 45, 173 (1998); doi:10.1016/S0302-4598(98)00111-1.
- L. Yang, W. Wei, J. Xia, H. Tao and P. Yang, Anal. Sci., 21, 679 (2005); doi:10.2116/analsci.21.679.
- W. Cai, Q. Xu, X. Zhao, J. Zhu and H. Chen, Chem. Mater., 18, 279 (2006); doi:10.1021/cm051442i.
- Z. Lu, Q. Huang and J.F. Rusling, J. Electroanal. Chem., 423, 59 (1997); doi:10.1016/S0022-0728(96)04843-7.
References
L. Zhang, X. Jiang, E. Wang and S. Dong, Biosens. Bioelectron., 21, 337 (2005); doi:10.1016/j.bios.2004.10.021.
X. Lu, J. Hu, X. Yao, Z. Wang and J. Li, Biomacromolecules, 7, 975 (2006); doi:10.1021/bm050933t.
J.F. Rusling, Acc. Chem. Res., 31, 363 (1998); doi:10.1021/ar970254y.
X. Han, W. Huang, J. Jia, S. Dong and E. Wang, Biosens. Bioelectron., 17, 741 (2002); doi:10.1016/S0956-5663(02)00052-0.
Q. Lu, J. Xu and S. Hu, Chem. Commun., 2860 (2006); doi:10.1039/b606429a.
J. Qian, Y. Liu, H. Liu, T. Yu and J. Deng, Biosens. Bioelectron., 12, 1213 (1997); doi:10.1016/S0956-5663(97)00056-0.
Y. Wu, Q. Shen and S. Hu, Anal. Chim. Acta, 558, 179 (2006); doi:10.1016/j.aca.2005.11.031.
T. Kitajima, H. Terai and Y. Ito, Biomaterials, 28, 1989 (2007); doi:10.1016/j.biomaterials.2006.12.022.
S. Zong, Y. Cao, Y. Zhou and H. Ju, Langmuir, 22, 8915 (2006); doi:10.1021/la060930h.
H. Huang, P. He, N. Hu and Y. Zeng, Bioelectrochemistry, 61, 29 (2003); doi:10.1016/S1567-5394(03)00057-4.
Y. Li, H. Liu and D. Pang, J. Electroanal. Chem., 574, 23 (2004); doi:10.1016/j.jelechem.2004.07.011.
A. Reischwitz, K.D. Reh and K. Buchholz, Enzyme Microb. Technol., 17, 457 (1995); doi:10.1016/0141-0229(94)00091-5.
L. Caseli, J.D.S. dos Santos Jr., M. Foschini, D. Goncalves and J.O.N. Oliveira Jr., J. Colloid Interface Sci., 303, 326 (2006); doi:10.1016/j.jcis.2006.07.013.
H. Huang, N. Hu, Y. Zeng and G. Zhou, Anal. Biochem., 308, 141 (2002); doi:10.1016/S0003-2697(02)00242-7.
N.W. Fadnavis and K. Koteshwar, Biotechnol. Prog., 15, 98 (1999); doi:10.1021/bp980117f.
H. Yao, N. Li, J. Xu and J. Zhu, Talanta, 71, 550 (2007); doi:10.1016/j.talanta.2006.04.025.
Z. Wu, B. Wang, Z. Cheng, X. Yang, S. Dong and E. Wang, Biosens. Bioelectron., 16, 47 (2001); doi:10.1016/S0956-5663(00)00132-9.
W. Zhang and G. Li, Anal. Sci., 20, 603 (2004); doi:10.2116/analsci.20.603.
F.W. Scheller, N. Bistolas, S. Liu, M. Jänchen, M. Katterle and U. Wollenberger, Adv. Colloid Interf. Sci., 116, 111 (2005); doi:10.1016/j.cis.2005.05.006.
Y. Wu and S. Hu, Mikrochim. Acta, 159, 1 (2007); doi:10.1007/s00604-007-0749-4.
C. Fan, G. Li, J. Zhu and D. Zhu, Anal. Chim. Acta, 423, 95 (2000); doi:10.1016/S0003-2670(00)01093-X.
Y. Zhou, Z. Li, N. Hu, Y. Zeng and J.F. Rusling, Langmuir, 18, 8573 (2002); doi:10.1021/la026120x.
P. He and N. Hu, J. Phys. Chem. B, 108, 13144 (2004); doi:10.1021/jp049974u.
J. Feng, J. Xu and H. Chen, Biosens. Bioelectron., 22, 1618 (2007); doi:10.1016/j.bios.2006.07.022.
Z. Dai, S. Liu, H. Ju and H. Chen, Biosens. Bioelectron., 19, 861 (2004); doi:10.1016/j.bios.2003.08.024.
J. Li, J. Tang, L. Zhou, X. Han and H. Liu, Bioelectrochemistry, 86, 60 (2012); doi:10.1016/j.bioelechem.2012.02.002.
M. Takiguchi, K. Igarashi, M. Azuma and H. Ooshima, Cryst. Growth Des., 6, 2754 (2006); doi:10.1021/cg0604576.
D. Yang, L. Qi and J. Ma, Adv. Mater., 14, 1543 (2002); doi:10.1002/1521-4095(20021104)14:21<1543::AID-ADMA1543>3.0.CO;2-B.
P.K. Ajikumar, R. Lakshminarayanan and S. Valiyaveettil, Cryst. Growth Des., 4, 331 (2004); doi:10.1021/cg034128e.
W.T. Tsai, J. Yang, C. Lai, Y. Cheng, C. Lin and C.W. Yeh, Bioresour. Technol., 97, 488 (2006); doi:10.1016/j.biortech.2005.02.050.
M.M.F. Choi, W.S.H. Pang, X. Wu and D. Xiao, Analyst, 126, 1558 (2001); doi:10.1039/b103205b.
Y. Zhang, G. Wen, Y. Zhou, S. Shuang, C. Dong and M.M.F. Choi, Biosens. Bioelectron., 22, 1791 (2007); doi:10.1016/j.bios.2006.08.038.
Z. Wu, J. Tang, Z. Cheng, X. Yang and E. Wang, Anal. Chem., 72, 6030 (2000); doi:10.1021/ac000764x.
H. Chen, Y. Wang, Y. Liu, Y. Wang, L. Qi and S. Dong, Electrochem. Commun., 9, 469 (2007); doi:10.1016/j.elecom.2006.10.019.
P. Diao, D. Jiang, X. Cui, D. Gu, R. Tong and B. Zhong, Bioelectrochem. Bioenerg., 45, 173 (1998); doi:10.1016/S0302-4598(98)00111-1.
L. Yang, W. Wei, J. Xia, H. Tao and P. Yang, Anal. Sci., 21, 679 (2005); doi:10.2116/analsci.21.679.
W. Cai, Q. Xu, X. Zhao, J. Zhu and H. Chen, Chem. Mater., 18, 279 (2006); doi:10.1021/cm051442i.
Z. Lu, Q. Huang and J.F. Rusling, J. Electroanal. Chem., 423, 59 (1997); doi:10.1016/S0022-0728(96)04843-7.