Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Kinetics of Nanocomposites Using WO3 with Carbon Nanomaterials for Photocatalytic Degradation of Organic Dyes
Corresponding Author(s) : Weon Bae Ko
Asian Journal of Chemistry,
Vol. 28 No. 1 (2016): Vol 28 Issue 1
Abstract
WO3 nanoparticles were synthesized by adding 3.8 × 10-4 M ammonium metatungstate hydrate (H26N6O40W12·H2O) to 500 mL of distilled water. The resulting mixture was heated for 4 h on the hot plate and then calcined in an electric furnace at 800 K for 2 h. WO3/graphene nanocomposites were prepared by the reaction of WO3 nanoparticles and graphene using tetrahydrofuran as the solvent. In addition, WO3/[C60]fullerene nanocomposites were prepared by the reaction of WO3 nanoparticles and [C60]fullerene. WO3/graphene nanocomposites and WO3/[C60]fullerene nanocomposites were characterized by X-ray diffraction, ultraviolet-visible spectrophotometry, scanning electron microscopy and transmission electron microscopy. The WO3/graphene nanocomposites and WO3/[C60]fullerene nanocomposites were examined as photocatalysts for the degradation of organic dyes such as methylene blue, brilliant green and rhodamine-B under ultraviolet light at 254 nm by UV-visible spectrophotometry.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wang, S.H. Baek, J.H. Lee and S.W. Lim, Chem. Eng. J., 146, 355 (2009); doi:10.1016/j.cej.2008.06.016.
- A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995); doi:10.1021/cr00033a003.
- M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
- A.L. Linsebigler, G. Lu and J.T. Yates, Chem. Rev., 95, 735 (1995); doi:10.1021/cr00035a013.
- K.R. Gopidas, M. Bohorquez and P.V. Kamat, J. Phys. Chem., 94, 6435 (1990); doi:10.1021/j100379a051.
- J. Jorther and C.N.R. Rao, Pure Appl. Chem., 74, 1491 (2002); doi:10.1351/pac200274091491.
- A. Fujishima and K. Honda, Nature, 238, 37 (1972); doi:10.1038/238037a0.
- Z.D. Meng and W.C. Oh, Asian J. Chem., 23, 847 (2011).
- Y.I. Kim, S. Salim, M.J. Huq and T.E. Mallouk, J. Am. Chem. Soc., 113, 9561 (1991); doi:10.1021/ja00025a021.
- W.C. Oh, F.J. Zhang and M.L. Chen, J. Ind. Eng. Chem., 16, 299 (2010); doi:10.1016/j.jiec.2009.09.065.
- S. Bae, E. Shim, J. Yoon and H. Joo, Sol. Energy Mater. Sol. Cells, 92, 402 (2008); doi:10.1016/j.solmat.2007.09.019.
- L.Q. Jing, S.D. Li, S. Song, L.P. Xue and H.G. Fu, Sol. Energy Mater. Sol. Cells, 92, 1030 (2008); doi:10.1016/j.solmat.2008.03.003.
- P. Ngaotrakanwiwat, T.Tatsuma, S. Saitoh, Y. Ohko and A. Fujishima, Phys. Chem. Chem. Phys., 5, 3234 (2003); doi:10.1039/b304181f.
- X.H. Zhang, X.H. Lu, Y.Q. Shen, J.B. Han, L.Y. Yuan, L. Gong, Z. Xu, X.D. Bai, M. Wei, Y.X. Tong, Y.H. Gao, J. Chen, J. Zhou and Z.L. Wang, Chem. Commun., 47, 5804 (2011); doi:10.1039/c1cc10389j.
- D. Chen and J. Ye, Adv. Funct. Mater., 18, 1922 (2008); doi:10.1002/adfm.200701468.
- W.J. Li and Z.W. Fu, Appl. Surf. Sci., 256, 2447 (2010); doi:10.1016/j.apsusc.2009.10.085.
- T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko and A. Fujishima, Langmuir, 18, 7777 (2002); doi:10.1021/la026011i.
- S.K. Deb, Sol. Energy Mater. Sol. Cells, 25, 327 (1992); doi:10.1016/0927-0248(92)90077-3.
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); doi:10.1038/nmat1849.
- C. Wang, L. Zhan, W. Qiao and L. Ling, New Carbon Mater., 26, 21 (2011); doi:10.1016/S1872-5805(11)60063-2.
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Adv. Mater., 22, 3906 (2010); doi:10.1002/adma.201001068.
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); doi:10.1021/nl0731872.
- M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); doi:10.1021/nl802558y.
- K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H.L. Stormer, Solid State Commun., 146, 351 (2008); doi:10.1016/j.ssc.2008.02.024.
- C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); doi:10.1126/science.1157996.
- V. Apostolopoulou, J. Vakros, C. Kordulis and A. Lycourghiotis, Colloids Surf., 349, 189 (2009); doi:10.1016/j.colsurfa.2009.08.016.
- H. Tokuyama and E. Nakamura, J. Org. Chem., 59, 1135 (1994); doi:10.1021/jo00084a036.
- M. Terazima, N. Hirota, H. Shinohara and Y. Saito, J. Phys. Chem., 95, 9080 (1991); doi:10.1021/j100176a013.
- W. Krätschmer, L.D. Lamb, K. Fostiropoulos and D.R. Huffman, Nature, 347, 354 (1990); doi:10.1038/347354a0.
- W. Krätschmer, K. Fostiropoulos and D.R. Huffman, Chem. Phys. Lett., 170, 167 (1990); doi:10.1016/0009-2614(90)87109-5.
- M. Orfanopoulos and S. Kambourakis, Tetrahedron Lett., 36, 435 (1995); doi:10.1016/0040-4039(94)02277-I.
References
H. Wang, S.H. Baek, J.H. Lee and S.W. Lim, Chem. Eng. J., 146, 355 (2009); doi:10.1016/j.cej.2008.06.016.
A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995); doi:10.1021/cr00033a003.
M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
A.L. Linsebigler, G. Lu and J.T. Yates, Chem. Rev., 95, 735 (1995); doi:10.1021/cr00035a013.
K.R. Gopidas, M. Bohorquez and P.V. Kamat, J. Phys. Chem., 94, 6435 (1990); doi:10.1021/j100379a051.
J. Jorther and C.N.R. Rao, Pure Appl. Chem., 74, 1491 (2002); doi:10.1351/pac200274091491.
A. Fujishima and K. Honda, Nature, 238, 37 (1972); doi:10.1038/238037a0.
Z.D. Meng and W.C. Oh, Asian J. Chem., 23, 847 (2011).
Y.I. Kim, S. Salim, M.J. Huq and T.E. Mallouk, J. Am. Chem. Soc., 113, 9561 (1991); doi:10.1021/ja00025a021.
W.C. Oh, F.J. Zhang and M.L. Chen, J. Ind. Eng. Chem., 16, 299 (2010); doi:10.1016/j.jiec.2009.09.065.
S. Bae, E. Shim, J. Yoon and H. Joo, Sol. Energy Mater. Sol. Cells, 92, 402 (2008); doi:10.1016/j.solmat.2007.09.019.
L.Q. Jing, S.D. Li, S. Song, L.P. Xue and H.G. Fu, Sol. Energy Mater. Sol. Cells, 92, 1030 (2008); doi:10.1016/j.solmat.2008.03.003.
P. Ngaotrakanwiwat, T.Tatsuma, S. Saitoh, Y. Ohko and A. Fujishima, Phys. Chem. Chem. Phys., 5, 3234 (2003); doi:10.1039/b304181f.
X.H. Zhang, X.H. Lu, Y.Q. Shen, J.B. Han, L.Y. Yuan, L. Gong, Z. Xu, X.D. Bai, M. Wei, Y.X. Tong, Y.H. Gao, J. Chen, J. Zhou and Z.L. Wang, Chem. Commun., 47, 5804 (2011); doi:10.1039/c1cc10389j.
D. Chen and J. Ye, Adv. Funct. Mater., 18, 1922 (2008); doi:10.1002/adfm.200701468.
W.J. Li and Z.W. Fu, Appl. Surf. Sci., 256, 2447 (2010); doi:10.1016/j.apsusc.2009.10.085.
T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko and A. Fujishima, Langmuir, 18, 7777 (2002); doi:10.1021/la026011i.
S.K. Deb, Sol. Energy Mater. Sol. Cells, 25, 327 (1992); doi:10.1016/0927-0248(92)90077-3.
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); doi:10.1038/nmat1849.
C. Wang, L. Zhan, W. Qiao and L. Ling, New Carbon Mater., 26, 21 (2011); doi:10.1016/S1872-5805(11)60063-2.
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Adv. Mater., 22, 3906 (2010); doi:10.1002/adma.201001068.
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); doi:10.1021/nl0731872.
M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); doi:10.1021/nl802558y.
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H.L. Stormer, Solid State Commun., 146, 351 (2008); doi:10.1016/j.ssc.2008.02.024.
C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); doi:10.1126/science.1157996.
V. Apostolopoulou, J. Vakros, C. Kordulis and A. Lycourghiotis, Colloids Surf., 349, 189 (2009); doi:10.1016/j.colsurfa.2009.08.016.
H. Tokuyama and E. Nakamura, J. Org. Chem., 59, 1135 (1994); doi:10.1021/jo00084a036.
M. Terazima, N. Hirota, H. Shinohara and Y. Saito, J. Phys. Chem., 95, 9080 (1991); doi:10.1021/j100176a013.
W. Krätschmer, L.D. Lamb, K. Fostiropoulos and D.R. Huffman, Nature, 347, 354 (1990); doi:10.1038/347354a0.
W. Krätschmer, K. Fostiropoulos and D.R. Huffman, Chem. Phys. Lett., 170, 167 (1990); doi:10.1016/0009-2614(90)87109-5.
M. Orfanopoulos and S. Kambourakis, Tetrahedron Lett., 36, 435 (1995); doi:10.1016/0040-4039(94)02277-I.