Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Sensitivity of Viscosity Arrhenius-Type Equation to Density of Liquids
Corresponding Author(s) : R.B. Haj-Kacem
Asian Journal of Chemistry,
Vol. 28 No. 11 (2016): Vol 28 Issue 11
Abstract
Numerous empirical or semi-empirical equations are proposed in the literature to describe the temperature dependence of fluids viscosity. This paper aims to contribute to this research axis by investigating the effect of density of liquids on the modeling of liquid viscosity upon temperature. We focused for that on the Arrhenius-type equation. Using experimental data set of pure solvents from the literature, this study is based on the classification of heavy liquid versus light liquid. Thus, statistical tests and econometric estimations showed that there is strong evidence that this classification affect significantly the distribution of the Arrhenius-type equation parameters and the modeling of the viscosity-temperature dependence. It is suggested that new specific coefficient values of the simplified Arrhenius-type equation taking into consideration the said effect and allowing better estimation accuracy. This result is important for the accuracy in the estimation of the models’ parameters for chemical and industrial processes and designs. It could also pave the way to investigate more accurate values of the equation’s parameters when the natures of fluids are classified differently.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Ouerfelli, M. Bouaziz and J.V. Herráez, Phys. Chem. Liq., 51, 55 (2013); doi:10.1080/00319104.2012.682260.
- J.V. Herráez, R. Belda, O. Diez and M. Herráez, J. Solution Chem., 37, 233 (2008); doi:10.1007/s10953-007-9226-2.
- J.B. Irving, NEL Report Numbers 630 and 631, National Engineering Laboratory, East Kilbride, Glasgow (1977).
- S.W. Benson, Thermochemical Kinetics, Wiley, New York (1976).
- J.A. Dean, Handbook of Organic Chemistry, McGraw-Hill, New York (1987).
- S. Glasstone, K.L. Laidler and H. Eyring, The Theory of Rate Process, McGraw-Hill, New York (1941).
- L.S. Lee and Y.S. Lee, Fluid Phase Equilib., 181, 47 (2001); doi:10.1016/S0378-3812(01)00368-5.
- L. Qunfang and H. Yu-Chun, Fluid Phase Equilib., 154, 153 (1999); doi:10.1016/S0378-3812(98)00415-4.
- R. Macías-Salinas, F. García-Sánchez and G. Eliosa-Jiménez, Fluid Phase Equilib., 210, 319 (2003); doi:10.1016/S0378-3812(03)00169-9.
- R.B. Haj-Kacem, N. Ouerfelli, J.V. Herráez, M. Guettari, H. Hamda and M. Dallel, Fluid Phase Equilib., 383, 11 (2014); doi:10.1016/j.fluid.2014.09.023.
- R.B. Haj-Kacem, N. Ouerfelli and J.V. Herráez, Phys. Chem. Liq., 53, 776 (2015); doi:10.1080/00319104.2015.1048248.
- J.G. Kirkwood, F.P. Buff and M.S. Green, J. Chem. Phys., 17, 988 (1949); doi:10.1063/1.1747099.
- P.T. Cummings and D.J. Evans, Ind. Eng. Chem. Res., 31, 1237 (1992); doi:10.1021/ie00005a001.
- H. Eyring, J. Chem. Phys., 4, 283 (1936); doi:10.1063/1.1749836.
- H. Eyring and J.O. Hirschfelder, J. Phys. Chem., 41, 249 (1937); doi:10.1021/j150380a007.
- H. Eyring and M.S. John, Significant Liquid Structure, Wiley, New York (1969).
- H. Vogel, Z. Phys. Z., 22, 645 (1921).
- G.S. Fulcher, J. Am. Ceram. Soc., 8, 339 (1925); doi:10.1111/j.1151-2916.1925.tb16731.x.
- G. Tammann and W. Hesse, Z. Anorg. Allg. Chem., 156, 245 (1926); doi:10.1002/zaac.19261560121.
- W.H. Kruskal and .W.A. Wallis, J. Am. Stat. Assoc., 47, 583 (1952); doi:10.1080/01621459.1952.10483441.
References
N. Ouerfelli, M. Bouaziz and J.V. Herráez, Phys. Chem. Liq., 51, 55 (2013); doi:10.1080/00319104.2012.682260.
J.V. Herráez, R. Belda, O. Diez and M. Herráez, J. Solution Chem., 37, 233 (2008); doi:10.1007/s10953-007-9226-2.
J.B. Irving, NEL Report Numbers 630 and 631, National Engineering Laboratory, East Kilbride, Glasgow (1977).
S.W. Benson, Thermochemical Kinetics, Wiley, New York (1976).
J.A. Dean, Handbook of Organic Chemistry, McGraw-Hill, New York (1987).
S. Glasstone, K.L. Laidler and H. Eyring, The Theory of Rate Process, McGraw-Hill, New York (1941).
L.S. Lee and Y.S. Lee, Fluid Phase Equilib., 181, 47 (2001); doi:10.1016/S0378-3812(01)00368-5.
L. Qunfang and H. Yu-Chun, Fluid Phase Equilib., 154, 153 (1999); doi:10.1016/S0378-3812(98)00415-4.
R. Macías-Salinas, F. García-Sánchez and G. Eliosa-Jiménez, Fluid Phase Equilib., 210, 319 (2003); doi:10.1016/S0378-3812(03)00169-9.
R.B. Haj-Kacem, N. Ouerfelli, J.V. Herráez, M. Guettari, H. Hamda and M. Dallel, Fluid Phase Equilib., 383, 11 (2014); doi:10.1016/j.fluid.2014.09.023.
R.B. Haj-Kacem, N. Ouerfelli and J.V. Herráez, Phys. Chem. Liq., 53, 776 (2015); doi:10.1080/00319104.2015.1048248.
J.G. Kirkwood, F.P. Buff and M.S. Green, J. Chem. Phys., 17, 988 (1949); doi:10.1063/1.1747099.
P.T. Cummings and D.J. Evans, Ind. Eng. Chem. Res., 31, 1237 (1992); doi:10.1021/ie00005a001.
H. Eyring, J. Chem. Phys., 4, 283 (1936); doi:10.1063/1.1749836.
H. Eyring and J.O. Hirschfelder, J. Phys. Chem., 41, 249 (1937); doi:10.1021/j150380a007.
H. Eyring and M.S. John, Significant Liquid Structure, Wiley, New York (1969).
H. Vogel, Z. Phys. Z., 22, 645 (1921).
G.S. Fulcher, J. Am. Ceram. Soc., 8, 339 (1925); doi:10.1111/j.1151-2916.1925.tb16731.x.
G. Tammann and W. Hesse, Z. Anorg. Allg. Chem., 156, 245 (1926); doi:10.1002/zaac.19261560121.
W.H. Kruskal and .W.A. Wallis, J. Am. Stat. Assoc., 47, 583 (1952); doi:10.1080/01621459.1952.10483441.