Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Dissimilatory Iron Reduction Processes of Soil from Three Gorges Reservoir Area and Effect on Chemical Form of Fe
Corresponding Author(s) : Ning Zuo
Asian Journal of Chemistry,
Vol. 27 No. 1 (2015): Vol 27 Issue 1
Abstract
Purple soil and yellow soil from three gorges reservoir area are submerged and incubated under a nitrogen atmosphere at constant temperature (25°) to study the dissimilatory iron reduction processes and its effect on chemical form of iron. The results show that the pH and oxidation reduction potential decrease with the transition of soil redox condition and it is especially obvious for the yellow soil. The content of Fe(II) increases to 3495.21 mg/kg for yellow soil and 536.44 mg/kg for purple soil. There are no obvious changes of redox condition and Fe(II) for sterile soil. It suggests that dissimilatory iron reduction should be driven by metabolic activity of microbe. With the transition of soil redox condition, the content of oxide-Fe increases significantly and the content of Fe(II) and oxide-Fe are significantly and positively correlated, which indicate that the transformation of Fe speciation is the result of dissimilatory iron reduction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.V. Weiss, D. Emerson and J.P. Megonigal, FEMS Microbiol. Ecol., 48, 89 (2004); doi:10.1016/j.femsec.2003.12.014.
- D.R. Lovley, D.E. Holmes and K.P. Nevin, Adv. Microb. Physiol., 49, 219 (2004); doi:10.1016/S0065-2911(04)49005-5.
- E.W. Brennan and W.L. Lindsay, Geochim. Cosmochim. Acta, 60, 3609 (1996); doi:10.1016/0016-7037(96)00162-7.
- L.N. Xu, Z.P. Li and Y.P. Che, Environ. Sci., 30, 1 (2009).
- H.A. El-Azim and Kh.M. El-Moselhy, J. Marine Syst., 56, 363 (2005); doi:10.1016/j.jmarsys.2004.12.001.
- J.M. Zachara, J.K. Fredrickson, S.C. Smith and P.L. Gassman, Geochim. Cosmochim. Acta, 65, 75 (2001); doi:10.1016/S0016-7037(00)00500-7.
References
J.V. Weiss, D. Emerson and J.P. Megonigal, FEMS Microbiol. Ecol., 48, 89 (2004); doi:10.1016/j.femsec.2003.12.014.
D.R. Lovley, D.E. Holmes and K.P. Nevin, Adv. Microb. Physiol., 49, 219 (2004); doi:10.1016/S0065-2911(04)49005-5.
E.W. Brennan and W.L. Lindsay, Geochim. Cosmochim. Acta, 60, 3609 (1996); doi:10.1016/0016-7037(96)00162-7.
L.N. Xu, Z.P. Li and Y.P. Che, Environ. Sci., 30, 1 (2009).
H.A. El-Azim and Kh.M. El-Moselhy, J. Marine Syst., 56, 363 (2005); doi:10.1016/j.jmarsys.2004.12.001.
J.M. Zachara, J.K. Fredrickson, S.C. Smith and P.L. Gassman, Geochim. Cosmochim. Acta, 65, 75 (2001); doi:10.1016/S0016-7037(00)00500-7.