This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis of Zinc Oxide Nanoparticles using Leaf Extract of Causonis trifolia (L.) and its Applications on Germination and Growth Enhancement of Mustard Seeds
Corresponding Author(s) : N. Usha Rani
Asian Journal of Chemistry,
Vol. 35 No. 4 (2023): Vol 35 Issue 4, 2023
Abstract
The present work reported the seed germination and plant growth activity studies on mustard seeds using bio-inspired green synthesized zinc oxide nanoparticles (ZnO NPs). The ZnO NPs were synthesized via green method utilizing Causonis trifolia (L.) plant leaf extract as a capping as well as reducing agent. The synthesized zinc oxide nanoparticles (ZnO NPs) have been characterized by using powder XRD (X-ray diffraction), FTIR (Fourier transforms infrared spectroscopy), emission SEM (scanning electron microscopy) and UV-visible spectroscopy. Based on various characterizations, it was proved that the nanoparticles were hexagonal Wurtzite form with more or less spherical in shape having an average particle size of 58 nm that contains 78% of metallic zinc. Seed germination and plant growth activity studies of ZnO NPs have been performed on mustard seeds through the pot method. The result revealed a high seed germination rate (91.7%) of mustard seeds when comparing observed in control pots (62.1%). Further dose-dependent studies also performed under the same condition. The measurements of each plant shoot length and root length have performed after six days. The mustard plants root grown in pots with ZnO NPs at 1000 mg/Kg (6.9 cm) have grown 627% higher and plants in pots with ZnO NPs at 100 mg/Kg (4.8 cm) have grown 436% higher than the control pot (1.1 cm). The shoot length of the mustard plant at ZnO NPs at 1000 mg/Kg (9.8 cm) has grown 316% at 100 mg/Kg (6.7 cm) has grown 216% higher than the control pot (3.1 cm). The results indicate that the synthesized ZnO NPs could potentially be used as an enrichment fertilizer to improve agricultural output.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Parisi, M. Vigani and E. Rodríguez-Cerezo, Nano Today, 10, 124 (2015); https://doi.org/10.1016/j.nantod.2014.09.009
- FAO, The Future of Food and Agriculture, Trends and Challenges, (2017).
- S.J. Vermeulen, P.K. Aggarwal, A. Ainslie, C. Angelone, B.M. Campbell, A.J. Challinor, J.W. Hansen, J.S.I. Ingram, A. Jarvis, P. Kristjanson, C. Lau, G.C. Nelson, P.K. Thornton and E. Wollenberg, Environ. Sci. Policy, 15, 136 (2012); https://doi.org/10.1016/j.envsci.2011.09.003
- A. Karny, A. Zinger, A. Kajal, J. Shainsky-Roitman and A. Schroeder, Sci. Rep., 8, 7589 (2018); https://doi.org/10.1038/s41598-018-25197-y
- J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo and G.M. Whitesides, Chem. Rev., 105, 1103 (2005); https://doi.org/10.1021/cr0300789
- T.J. Park, K.G. Lee and S.Y. Lee, Appl. Microbiol. Biotechnol., 100, 521 (2016); https://doi.org/10.1007/s00253-015-6904-7
- M. Zhang, B. Gao, J. Chen, Y. Li, A.E. Creamer and H. Chen, Chem. Eng. J., 255, 107 (2014); https://doi.org/10.1016/j.cej.2014.06.023
- A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M.I. Ismail, H.A. Qari, K. Umar and M.N.M. Ibrahim, Front. Chem., 8, 341 (2020); https://doi.org/10.3389/fchem.2020.00341
- M. Tourang, B. Aminzadeh and A. Torabian, Environ. Health Eng. Manag., 5, 1 (2018); https://doi.org/10.15171/EHEM.2018.01
- S. Sabir, M. Arshad and S.K. Chaudhari, Sci. World J., 2014, 925494 (2014); https://doi.org/10.1155/2014/925494
- A. Sharma, B. Patni, D. Shankhdhar and S.C. Shankhdhar, Physiol. Mol. Biol. Plants, 19, 11 (2013); https://doi.org/10.1007/s12298-012-0139-1
- F.W. Rieger Hippler, R.M. Boaretto, J.A. Quaggio, A.E. Boaretto, C.H. Abreu-Junior and D. Mattos Jr., PLoS One, 10, e0116903 (2015); https://doi.org/10.1371/journal.pone.0116903
- L. Rossi, L.N. Fedenia, H. Sharifan, X. Ma and L. Lombardini, Plant Physiol. Biochem., 135, 160 (2019); https://doi.org/10.1016/j.plaphy.2018.12.005
- A.K. Gupta, M. Sharma, New Delhi, India: ICMR-Review on Indian Medical Plants, vol. 5, p. 879 (2007).
- P. Peddi, P.R. Ptsrk, N.U. Rani and S.L. Tulasi, J. Genet. Eng. Biotechnol., 19, 131 (2021); https://doi.org/10.1186/s43141-021-00229-9
- J. Arora, C. Roat, S. Goyal and K.G. Ramawat, Acta Physiol. Plant., 31, 1307 (2009); https://doi.org/10.1007/s11738-009-0359-3
- D. Kumar, J. Gupta, A. Gupta, S. Kumar and R. Arya, Pharmacogn. Rev., 5, 184 (2011); https://doi.org/10.4103/0973-7847.91117
- P.K. Rai, V. Kumar, S. Lee, N. Raza, K.-H. Kim, Y.S. Ok and D.C.W. Tsang, Environ. Int., 119, 1 (2018); https://doi.org/10.1016/j.envint.2018.06.012
- S.R. Tariq and A. Ashraf, Arab. J. Chem., 9, 806 (2016); https://doi.org/10.1016/j.arabjc.2013.09.024
- S. Shinde, P. Paralikar, A.P. Ingle and M. Rai, Arab. J. Chem., 13, 3172 (2020); https://doi.org/10.1016/j.arabjc.2018.10.001
- D.I. Arnon, Plant Physiol., 24, 1 (1949); https://doi.org/10.1104/pp.24.1.1
- A. Rahdar, M. Aliahmad and Y. Azizi, J. Nanostruct., 5, 145 (2015); https://doi.org/10.7508/JNS.2015.02.009
- Y. Mirzaei, S.M. Hamad, A.A. Barzinjy, V.M. Faris, M. Karimpour and M.H. Ahmed, Emergent Mater., 5, 1705 (2022); https://doi.org/10.1007/s42247-022-00420-9
- A. Taufiq, H.N. Ulya, J. Utomo and N. Sunaryono, J. Phys.: Conf. Ser., 1093, 012001 (2018); https://doi.org/10.1088/1742-6596/1093/1/012001
- A. Becheri, M. Dürr, P. Lo Nostro and P. Baglioni, J. Nanopart. Res., 10, 679 (2008); https://doi.org/10.1007/s11051-007-9318-3
- R. Raliya, V. Saharan, C. Dimkpa and P. Biswas, J. Agric. Food Chem., 66, 6487 (2018); https://doi.org/10.1021/acs.jafc.7b02178
- F. Torney, B.G. Trewyn, V.S.Y. Lin and K. Wang, Nat. Nanotechnol., 2, 295 (2007); https://doi.org/10.1038/nnano.2007.108
References
C. Parisi, M. Vigani and E. Rodríguez-Cerezo, Nano Today, 10, 124 (2015); https://doi.org/10.1016/j.nantod.2014.09.009
FAO, The Future of Food and Agriculture, Trends and Challenges, (2017).
S.J. Vermeulen, P.K. Aggarwal, A. Ainslie, C. Angelone, B.M. Campbell, A.J. Challinor, J.W. Hansen, J.S.I. Ingram, A. Jarvis, P. Kristjanson, C. Lau, G.C. Nelson, P.K. Thornton and E. Wollenberg, Environ. Sci. Policy, 15, 136 (2012); https://doi.org/10.1016/j.envsci.2011.09.003
A. Karny, A. Zinger, A. Kajal, J. Shainsky-Roitman and A. Schroeder, Sci. Rep., 8, 7589 (2018); https://doi.org/10.1038/s41598-018-25197-y
J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo and G.M. Whitesides, Chem. Rev., 105, 1103 (2005); https://doi.org/10.1021/cr0300789
T.J. Park, K.G. Lee and S.Y. Lee, Appl. Microbiol. Biotechnol., 100, 521 (2016); https://doi.org/10.1007/s00253-015-6904-7
M. Zhang, B. Gao, J. Chen, Y. Li, A.E. Creamer and H. Chen, Chem. Eng. J., 255, 107 (2014); https://doi.org/10.1016/j.cej.2014.06.023
A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M.I. Ismail, H.A. Qari, K. Umar and M.N.M. Ibrahim, Front. Chem., 8, 341 (2020); https://doi.org/10.3389/fchem.2020.00341
M. Tourang, B. Aminzadeh and A. Torabian, Environ. Health Eng. Manag., 5, 1 (2018); https://doi.org/10.15171/EHEM.2018.01
S. Sabir, M. Arshad and S.K. Chaudhari, Sci. World J., 2014, 925494 (2014); https://doi.org/10.1155/2014/925494
A. Sharma, B. Patni, D. Shankhdhar and S.C. Shankhdhar, Physiol. Mol. Biol. Plants, 19, 11 (2013); https://doi.org/10.1007/s12298-012-0139-1
F.W. Rieger Hippler, R.M. Boaretto, J.A. Quaggio, A.E. Boaretto, C.H. Abreu-Junior and D. Mattos Jr., PLoS One, 10, e0116903 (2015); https://doi.org/10.1371/journal.pone.0116903
L. Rossi, L.N. Fedenia, H. Sharifan, X. Ma and L. Lombardini, Plant Physiol. Biochem., 135, 160 (2019); https://doi.org/10.1016/j.plaphy.2018.12.005
A.K. Gupta, M. Sharma, New Delhi, India: ICMR-Review on Indian Medical Plants, vol. 5, p. 879 (2007).
P. Peddi, P.R. Ptsrk, N.U. Rani and S.L. Tulasi, J. Genet. Eng. Biotechnol., 19, 131 (2021); https://doi.org/10.1186/s43141-021-00229-9
J. Arora, C. Roat, S. Goyal and K.G. Ramawat, Acta Physiol. Plant., 31, 1307 (2009); https://doi.org/10.1007/s11738-009-0359-3
D. Kumar, J. Gupta, A. Gupta, S. Kumar and R. Arya, Pharmacogn. Rev., 5, 184 (2011); https://doi.org/10.4103/0973-7847.91117
P.K. Rai, V. Kumar, S. Lee, N. Raza, K.-H. Kim, Y.S. Ok and D.C.W. Tsang, Environ. Int., 119, 1 (2018); https://doi.org/10.1016/j.envint.2018.06.012
S.R. Tariq and A. Ashraf, Arab. J. Chem., 9, 806 (2016); https://doi.org/10.1016/j.arabjc.2013.09.024
S. Shinde, P. Paralikar, A.P. Ingle and M. Rai, Arab. J. Chem., 13, 3172 (2020); https://doi.org/10.1016/j.arabjc.2018.10.001
D.I. Arnon, Plant Physiol., 24, 1 (1949); https://doi.org/10.1104/pp.24.1.1
A. Rahdar, M. Aliahmad and Y. Azizi, J. Nanostruct., 5, 145 (2015); https://doi.org/10.7508/JNS.2015.02.009
Y. Mirzaei, S.M. Hamad, A.A. Barzinjy, V.M. Faris, M. Karimpour and M.H. Ahmed, Emergent Mater., 5, 1705 (2022); https://doi.org/10.1007/s42247-022-00420-9
A. Taufiq, H.N. Ulya, J. Utomo and N. Sunaryono, J. Phys.: Conf. Ser., 1093, 012001 (2018); https://doi.org/10.1088/1742-6596/1093/1/012001
A. Becheri, M. Dürr, P. Lo Nostro and P. Baglioni, J. Nanopart. Res., 10, 679 (2008); https://doi.org/10.1007/s11051-007-9318-3
R. Raliya, V. Saharan, C. Dimkpa and P. Biswas, J. Agric. Food Chem., 66, 6487 (2018); https://doi.org/10.1021/acs.jafc.7b02178
F. Torney, B.G. Trewyn, V.S.Y. Lin and K. Wang, Nat. Nanotechnol., 2, 295 (2007); https://doi.org/10.1038/nnano.2007.108