This work is licensed under a Creative Commons Attribution 4.0 International License.
Conductivity Control of Al-doped ZnO Thin Films Deposited by Radio Frequency Sputtering
Corresponding Author(s) : Dong-Cheol Oh
Asian Journal of Chemistry,
Vol. 35 No. 7 (2023): Vol 35 Issue 7 (2023)
Abstract
Films made up of Al-doped ZnO (AZO) are the promising transparent conductive oxides. Hall measurements were used to investigate the effects of varying the sputtering parameters on the electrical resistivity, electron concentration and electron mobility of a series of AZO films produced by radio frequency (RF) sputtering. Increases in plasma power, chamber pressure, argon (Ar) flow rate and decreases in substrate temperature lead to the higher electrical resistance. However, all the samples exhibit a pattern in which electrical resistivities decrease with increasing annealing temperature (below 200-400 ºC) and increase (above 200-400 ºC). As the number of electrons increases, the electrical resistance decreases and vice-versa. The carrier compensation effect or excess carrier compensation due to the formation or annihilation of conductive defects is responsible for these shifts in the electrical characteristics. It was also found that the conductivities of the AZO films formed via RF-sputtering dependent on imperfections in structure such as ionized impurities and grain boundaries, as electron mobility is shown to be proportional to the electron concentration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Singh and F. Scotognella, Micromachines, 14, 536 (2023); https://doi.org/10.3390/mi14030536
- T. Minami, Semicond. Sci. Technol., 20, S35 (2005); https://doi.org/10.1088/0268-1242/20/4/004
- Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu and H. Cheng, Langmuir, 29, 13836 (2013); https://doi.org/10.1021/la4033282
- C.I. Bright, 50 Years of Vacuum Coating Technology and the Growth of the Society of Vacuum Coaters (2007).
- E. Fortunato, D. Ginley, H. Hosono and D.C. Paine, MRS Bull., 32, 242 (2007); https://doi.org/10.1557/mrs2007.29
- H. Zhu, J. Hupkes, E. Bunte and S.M. Huang, Appl. Surf. Sci., 261, 268 (2012); https://doi.org/10.1016/j.apsusc.2012.07.159
- C.H. Huang, H.L. Cheng, W.E. Chang and M.S. Wong, J. Electrochem. Soc., 158, H510 (2011); https://doi.org/10.1149/1.3559456
- J.K. Wassei and R.B. Kaner, Mater. Today, 13, 52 (2010); https://doi.org/10.1016/S1369-7021(10)70034-1
- L. Hu, J. Song, X. Yin, Z. Su and Z. Li, Polymers, 12, 145 (2020); https://doi.org/10.3390/polym12010145
- G.F. Wang, X.M. Tao and R.X. Wang, Compos. Sci. Technol., 68, 2837 (2008); https://doi.org/10.1016/j.compscitech.2007.11.004
- S. Sharma, S. Shriwastava, S. Kumar, K. Bhatt and C.C. Tripathi, Opto-Electr. Rev., 26, 223 (2018);m https://doi.org/10.1016/j.opelre.2018.06.004
- Y. Wen and J. Xu, J. Polym. Sci. Part A: Polym. Chem., 55, 1121 (2016); https://doi.org/10.1002/pola.28482
- K. Ellmer, A. Klein and B. Rech, Transparent Conductive Zinc Oxide - Basics and Applications in Thin Film Solar Cells, Springer (2008).
- M.U. Shahid, K.M. Deen, A. Ahmad, M.A. Akram and M. Aslam, Appl. Nanosci., 6, 235 (2016); https://doi.org/10.1007/s13204-015-0425-7
- B.J. Babu, A. Maldonado, S. Velumani and R. Asomoza, Mater. Sci. Eng. B, 174, 31 (2010); https://doi.org/10.1016/j.mseb.2010.03.010
- D.C. Oh, T. Suzuki, J.J. Kim, H. Makino, T. Hanada, M.W. Cho, T. Yao and H.J. Ko, Appl. Phys. Lett., 86, 032909 (2005); https://doi.org/10.1063/1.1849852
- L.Y. Chen, W.H. Chen, J.J. Wang, F.C.N. Hong and Y.K. Su, Appl. Phys. Lett., 85, 5628 (2004); https://doi.org/10.1063/1.1835991
- S.H. Park, T. Minegishi, H.J. Lee, D.C. Oh, H.J. Ko, J.H. Chang and T. Yao, J. Appl. Phys., 110, 053520 (2011); https://doi.org/10.1063/1.3630030
- K.B. Kim, S.M. Lee, D.C. Oh and H.-J. Ko, J. Korean Phys. Soc., 67, 676 (2015); https://doi.org/10.3938/jkps.67.676
- T.S. Jang and D.C. Oh, MATEC Web of Conferences, 78, 01106 (2016); https://doi.org/10.1051/matecconf/20167801106
- D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press (2004).
- J.F. Shackelford, Introduction to Materials Science for Engineers, MacMillian Publishing Company (1985).
- P.J. Lin, Y.F. Lai, X.Q. Ding and S.Y. Cheng, Chem. Eng. Trans., 46, 1117 (2015); https://doi.org/10.3303/CET1546187
- D.K. Kim and H.B. Kim, J. Alloys Compd., 509, 421 (2011); https://doi.org/10.1016/j.jallcom.2010.09.047
- P. Gondoni, M. Ghidelli, F. Di Fonzo, V. Russo, P. Bruno, J. Marti-Rujas, C.E. Bottani, A. Li Bassi and C.S. Casari, Thin Solid Films, 520, 4707 (2012); https://doi.org/10.1016/j.tsf.2011.10.072
- S.I. Han and H.B. Kim, Appl. Sci. Converg. Technol., 25, 145 (2016); https://doi.org/10.5757/ASCT.2016.25.6.145
- L. Lu, H. Shen, H. Zhang, F. Jiang, B. Li and L. Lin, Optoelectron. Adv. Mater. Rapid Commun., 4, 596 (2010).
- G. Fang, D. Li and B. Yao, Vacuum, 68, 363 (2002); https://doi.org/10.1016/S0042-207X(02)00544-4
- D.C. Oh, S.H. Park, H. Goto, I.H. Im, M.N. Jung, J.H. Chang, T. Yao, J.S. Song, C.H. Bae, C.S. Han and K.W. Koo, Appl. Phys. Lett., 95, 151908 (2009); https://doi.org/10.1063/1.3247889
- D.C. Look, Electrical Characterization of GaAs Materials and Devices, John Wiley & Sons, Chichester (1989).
- H.E. Ruda, J. Appl. Phys., 59, 1220 (1986); https://doi.org/10.1063/1.336509
- J.Y. Seto, J. Appl. Phys., 46, 5247 (1975); https://doi.org/10.1063/1.321593
- G. Baccarani, B. Ricco and G. Spadini, J. Appl. Phys., 49, 5565 (1978); https://doi.org/10.1063/1.324477
References
M. Singh and F. Scotognella, Micromachines, 14, 536 (2023); https://doi.org/10.3390/mi14030536
T. Minami, Semicond. Sci. Technol., 20, S35 (2005); https://doi.org/10.1088/0268-1242/20/4/004
Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu and H. Cheng, Langmuir, 29, 13836 (2013); https://doi.org/10.1021/la4033282
C.I. Bright, 50 Years of Vacuum Coating Technology and the Growth of the Society of Vacuum Coaters (2007).
E. Fortunato, D. Ginley, H. Hosono and D.C. Paine, MRS Bull., 32, 242 (2007); https://doi.org/10.1557/mrs2007.29
H. Zhu, J. Hupkes, E. Bunte and S.M. Huang, Appl. Surf. Sci., 261, 268 (2012); https://doi.org/10.1016/j.apsusc.2012.07.159
C.H. Huang, H.L. Cheng, W.E. Chang and M.S. Wong, J. Electrochem. Soc., 158, H510 (2011); https://doi.org/10.1149/1.3559456
J.K. Wassei and R.B. Kaner, Mater. Today, 13, 52 (2010); https://doi.org/10.1016/S1369-7021(10)70034-1
L. Hu, J. Song, X. Yin, Z. Su and Z. Li, Polymers, 12, 145 (2020); https://doi.org/10.3390/polym12010145
G.F. Wang, X.M. Tao and R.X. Wang, Compos. Sci. Technol., 68, 2837 (2008); https://doi.org/10.1016/j.compscitech.2007.11.004
S. Sharma, S. Shriwastava, S. Kumar, K. Bhatt and C.C. Tripathi, Opto-Electr. Rev., 26, 223 (2018);m https://doi.org/10.1016/j.opelre.2018.06.004
Y. Wen and J. Xu, J. Polym. Sci. Part A: Polym. Chem., 55, 1121 (2016); https://doi.org/10.1002/pola.28482
K. Ellmer, A. Klein and B. Rech, Transparent Conductive Zinc Oxide - Basics and Applications in Thin Film Solar Cells, Springer (2008).
M.U. Shahid, K.M. Deen, A. Ahmad, M.A. Akram and M. Aslam, Appl. Nanosci., 6, 235 (2016); https://doi.org/10.1007/s13204-015-0425-7
B.J. Babu, A. Maldonado, S. Velumani and R. Asomoza, Mater. Sci. Eng. B, 174, 31 (2010); https://doi.org/10.1016/j.mseb.2010.03.010
D.C. Oh, T. Suzuki, J.J. Kim, H. Makino, T. Hanada, M.W. Cho, T. Yao and H.J. Ko, Appl. Phys. Lett., 86, 032909 (2005); https://doi.org/10.1063/1.1849852
L.Y. Chen, W.H. Chen, J.J. Wang, F.C.N. Hong and Y.K. Su, Appl. Phys. Lett., 85, 5628 (2004); https://doi.org/10.1063/1.1835991
S.H. Park, T. Minegishi, H.J. Lee, D.C. Oh, H.J. Ko, J.H. Chang and T. Yao, J. Appl. Phys., 110, 053520 (2011); https://doi.org/10.1063/1.3630030
K.B. Kim, S.M. Lee, D.C. Oh and H.-J. Ko, J. Korean Phys. Soc., 67, 676 (2015); https://doi.org/10.3938/jkps.67.676
T.S. Jang and D.C. Oh, MATEC Web of Conferences, 78, 01106 (2016); https://doi.org/10.1051/matecconf/20167801106
D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press (2004).
J.F. Shackelford, Introduction to Materials Science for Engineers, MacMillian Publishing Company (1985).
P.J. Lin, Y.F. Lai, X.Q. Ding and S.Y. Cheng, Chem. Eng. Trans., 46, 1117 (2015); https://doi.org/10.3303/CET1546187
D.K. Kim and H.B. Kim, J. Alloys Compd., 509, 421 (2011); https://doi.org/10.1016/j.jallcom.2010.09.047
P. Gondoni, M. Ghidelli, F. Di Fonzo, V. Russo, P. Bruno, J. Marti-Rujas, C.E. Bottani, A. Li Bassi and C.S. Casari, Thin Solid Films, 520, 4707 (2012); https://doi.org/10.1016/j.tsf.2011.10.072
S.I. Han and H.B. Kim, Appl. Sci. Converg. Technol., 25, 145 (2016); https://doi.org/10.5757/ASCT.2016.25.6.145
L. Lu, H. Shen, H. Zhang, F. Jiang, B. Li and L. Lin, Optoelectron. Adv. Mater. Rapid Commun., 4, 596 (2010).
G. Fang, D. Li and B. Yao, Vacuum, 68, 363 (2002); https://doi.org/10.1016/S0042-207X(02)00544-4
D.C. Oh, S.H. Park, H. Goto, I.H. Im, M.N. Jung, J.H. Chang, T. Yao, J.S. Song, C.H. Bae, C.S. Han and K.W. Koo, Appl. Phys. Lett., 95, 151908 (2009); https://doi.org/10.1063/1.3247889
D.C. Look, Electrical Characterization of GaAs Materials and Devices, John Wiley & Sons, Chichester (1989).
H.E. Ruda, J. Appl. Phys., 59, 1220 (1986); https://doi.org/10.1063/1.336509
J.Y. Seto, J. Appl. Phys., 46, 5247 (1975); https://doi.org/10.1063/1.321593
G. Baccarani, B. Ricco and G. Spadini, J. Appl. Phys., 49, 5565 (1978); https://doi.org/10.1063/1.324477