This work is licensed under a Creative Commons Attribution 4.0 International License.
Physico-Chemical Aspects of the Processes During the Combustion and Heating of Tobacco under Different Conditions
Corresponding Author(s) : Mereme Idrizi
Asian Journal of Chemistry,
Vol. 35 No. 6 (2023): Vol 35 Issue 6, 2023
Abstract
Smoking cigarettes causes lung cancer, heart disease, chronic obstructive pulmonary disease (COPD) and other serious diseases. The damage caused by cigarette smoking is multifaceted and complex. Exposure to harmful and potentially harmful constituents (HPHCs), created during the process of burning tobacco, is the main reason for the development of smoking-related diseases. An alternative way to reduce the generation of toxicants from tobacco product is to heat rather than burn tobacco. Modified risk tobacco product (MRTP) are designed to significantly reduce or eliminate the release of harmful and potentially harmful chemicals while preserving, as much as possible, taste, sensory experience, nicotine delivery profile, and the ritual component of smoking cigarettes. In this review, the chemical composition of the smoke generated by conventional cigarettes to the composition of the aerosol generated by devices for controlled tobacco heating is compared. Also, critically assess the current knowledge in the field, aiming towards an objective assessment of the alternative tobacco
products.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Rodgman and T.A. Perfetti, The Chemical Components of Tobacco and Tobacco Smoke, Boca Raton: CRC Press, Edn. 2 (2013).
- G.R. Hanson, P.J. Venturelli and A.E. Fleckenstein, Drugs and Society, World Headquarters Jones & Bartlett Learning, Burlington, Edn 14 (2021).
- C. Pickford, Tobacco Production, Amazon Digital Services, LLC – KDP Print (2019).
- R.R. Baker, J. Anal. Appl. Pyrolysis, 11, 555 (1987); https://doi.org/10.1016/0165-2370(87)85054-4
- D.M. Burns, E. Dybing, N. Gray, S. Hecht, C. Anderson, T. Sanner, R. O’Connor, M. Djordjevic, C. Dresler, P. Hainaut, M. Jarvis, A. Opperhuizen and K. Straif, Tob. Control, 17, 132 (2008); https://doi.org/10.1136/tc.2007.024158
- U.S. Food and Drug Administration, Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke; Established List April 2012. Vol 77, No 64, FR 20034-37, Federal Register; (Accessed 10 Dec 2019); https://www.gpo.gov/fdsys/pkg/FR-2012-04-03/pdf/2012-7727.pdf
- International Agency for Research on Cancer, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Tobacco Smoke and Involuntary Smoking, IARC, Lyon, France, vol. 83 (2004).
- E.F. Domino, E. Hornbach and T. Demana, N. Engl. J. Med., 329, 437 (1993); https://doi.org/10.1056/NEJM199308053290619
- B. Siegmund, E. Leitner and W. Pfannhauser, J. Agric. Food Chem., 47, 3113 (1999); https://doi.org/10.1021/jf990089w
- J.A. Dani, Int. Rev. Neurobiol., 124, 3 (2015); https://doi.org/10.1016/bs.irn.2015.07.001
- A. Dau, P. Komal, M. Truong, G. Morris, G. Evans and R. Nashmi, BMC Neurosci., 14, 47 (2013); https://doi.org/10.1186/1471-2202-14-47
- L.R. LaRowe and J.W. Ditre, Pain, 161, 1688 (2020); https://doi.org/10.1097/j.pain.0000000000001874
- T. Bush, J.C. Lovejoy, M. Deprey and K.M. Carpenter, Obesity, 24, 1834 (2016); https://doi.org/10.1002/oby.21582
- M.R. Picciotto and P.J. Kenny, Cold Spring Harb. Perspect. Med., 3, a012112 (2013); https://doi.org/10.1101/cshperspect.a012112
- Y.S. Mineur, A. Abizaid, Y. Rao, R. Salas, R.J. DiLeone, D. Gündisch, S. Diano, M. De Biasi, T.L. Horvath, X.B. Gao and M.R. Picciotto, Science, 332, 1330 (2011); https://doi.org/10.1126/science.1201889
- N.L. Benowitz, J. Hukkanen and P. Jacob, eds: J.E. Henningfield, E.D. London and S. Pogun, Nicotine Chemistry, Metabolism, Kinetics and Biomarkers, In: Nicotine Psychopharmacology; Handbook of Experi-mental Pharmacology, Springer: Berlin, Heidelberg, vol. 192 (2009); https://doi.org/10.1007/978-3-540-69248-5_2
- J.J. Prochaska and N.L. Benowitz, Sci. Adv., 5, eaay9763 (2019); https://doi.org/10.1126/sciadv.aay9763
- N.L. Benowitz, Annu. Rev. Pharmacol. Toxicol., 49, 57 (2009); https://doi.org/10.1146/annurev.pharmtox.48.113006.094742
- B. Mayer, Arch Toxicol., 88, 5 (2014); https://doi.org/10.1007/s00204-013-1127-0
- J. Morgan, A.K. Breitbarth and A.L. Jones, Intern. Med. J., 49, 110 (2019); https://doi.org/10.1111/imj.14176
- https://pubchem.ncbi.nlm.nih.gov/compound/Nicotine
- https://www.acs.org/content/acs/en/molecule-of-the-week/archive/n/nicotine.html
- A.K. Duell, J.F. Pankow and D.H. Peyton, Tob. Control, 29, 055275 (2019); https://doi.org/10.1136/tobaccocontrol-2019-055275
- V.V. Gholap, R.S. Heyder, L. Kosmider and M.S. Halquist, J. Anal. Methods Chem., 2020, 6178570 (2020); https://doi.org/10.1155/2020/6178570
- P. Atkins, J. de Paula and J. Keeler, Atkins’ Physical Chemistry, Oxford University Press, Oxford, Edn. 11 (2017).
- R. Stabbert, R. Dempsey, J. Diekmann, C. Euchenhofer, T. Hagemeister, H.-J. Haussmann, A. Knorr, B.P. Mueller, P. Pospisil, W. Reininghaus, E. Roemer, F.J. Tewes and D.J. Veltel, Toxicol. In Vitro, 42, 222 (2017); https://doi.org/10.1016/j.tiv.2017.04.003
- P. Pratte, S. Cosandey and C. Goujon Ginglinger, Hum. Exp. Toxicol., 36, 1115 (2017); https://doi.org/10.1177/0960327116681653
- P. Pratte, S. Cosandey and C.G. Ginglinger, J. Aerosol Sci., 120, 52 (2018); https://doi.org/10.1016/j.jaerosci.2017.12.011
- https://www.iarc.who.int/
- N. Mallock, E. Pieper, C. Hutzler, F. Henkler-Stephani and A. Luch, Front Public Health, 7, 287 (2019); https://doi.org/10.3389/fpubh.2019.00287
- V. Cozzani, F. Barontini, T. McGrath, B. Mahler, M. Nordlund, M. Smith, J.P. Schaller and G. Zuber, Thermochim. Acta, 684, 178475 (2020); https://doi.org/10.1016/j.tca.2019.178475
- S. Boue, W.K. Schlage, D. Page, J. Hoeng and M.C. Peitsch, Regul. Toxicol. Pharmacol., 104, 115 (2019); https://doi.org/10.1016/j.yrtph.2019.03.007
- J.E. Chavarrio-Cañas, M. Monge-Palacios, E. Grajales-González and S.M. Sarathy, J. Phys. Chem. A, 125, 3177 (2021); https://doi.org/10.1021/acs.jpca.1c01650
- G. Jaccard, A. Kondylis, I. Gunduz, J. Pijnenburg and M. Belushkin, Regul. Toxicol. Pharmacol., 97, 103 (2018); https://doi.org/10.1016/j.yrtph.2018.06.011
- Aerosols and their Relation to Global Climate and Climate Sensitivity; Learn Science at Scitable; https://www.nature.com/scitable/knowledge/library/aerosols-and-their-relation-to-global-climate1102215345/
- Atmospheric Aerosols: What Are They, and Why Are They So Important?; https://www.nasa.gov/centers/langley/news/factsheets/Aerosols.html
- M.R. Smith, B. Clark, F. Ludicke, J.-P. Schaller, P. Vanscheeuwijck, J. Hoeng and M.C. Peitsch, Regul. Toxicol. Pharmacol., 81, S17 (2016); https://doi.org/10.1016/j.yrtph.2016.07.006
- V. Zenzen, J. Diekmann, B. Gerstenberg, S. Weber, S. Wittke and M.K. Schorp, Regul. Toxicol. Pharmacol., 64, S11 (2012); https://doi.org/10.1016/j.yrtph.2012.08.004
- J.-P. Schaller, J.P.M. Pijnenburg, A. Ajithkumar and A.R. Tricker, Regul. Toxicol. Pharmacol., 81, S48 (2016); https://doi.org/10.1016/j.yrtph.2016.10.016
- J.-P. Schaller, D. Keller, L. Poget, P. Pratte, E. Kaelin, D. McHugh, G. Cudazzo, D. Smart, A.R. Tricker, L. Gautier, M. Yerly, R. Reis Pires, S. Le Bouhellec, D. Ghosh, I. Hofer, E. Garcia, P. Vanscheeuwijck and S. Maeder, Regul. Toxicol. Pharmacol., 81, S27 (2016); https://doi.org/10.1016/j.yrtph.2016.10.001
- M.P. Ibañez, D. Martin, A.G. Gonzálvez, H.H. Telle and Á.G. Ureña, Am. J. Anal. Chem., 10, 76 (2019); https://doi.org/10.4236/ajac.2019.103007
- https://www.fda.gov/tobacco-products/rules-regulations-and-guidance/family-smoking-prevention-and1tobacco-control-act-overview
- M.I. Mitova, N. Bielik, P.B. Campelos, C. Cluse, C.G. Goujon-Ginglinger, A. Jaquier, M. Gomez Lueso, S. Maeder, C. Pitton, L. Poget, J. Polier-Calame, M. Rotach, E.G.R. Rouget, M. Schaller, M. Tharin and V. Zaugg, Air Qual. Atmos. Health, 12, 807 (2019); https://doi.org/10.1007/s11869-019-00697-6
- M.I. Mitova, P.B. Campelos, C.G. Goujon-Ginglinger, S. Maeder, N. Mottier, E.G.R. Rouget, M. Tharin and A.R. Tricker, Regul. Toxicol. Pharmacol., 80, 91 (2016); https://doi.org/10.1016/j.yrtph.2016.06.005
- N. Mottier, M. Tharin, C. Cluse, J.-R. Crudo, M.G. Lueso, C.G. Goujon-Ginglinger, A. Jaquier, M.I. Mitova, E.G.R. Rouget, M. Schaller and J. Solioz, Talanta, 158, 165 (2016); https://doi.org/10.1016/j.talanta.2016.05.022
- D. Thorne, A. Dalrymple, D. Dillon, M. Duke and C. Meredith, Inhal. Toxicol., 27, 629 (2015); https://doi.org/10.3109/08958378.2015.1080773
- M.C. Bentley, M. Almstetter, D. Arndt, A. Knorr, E. Martin, P. Pospisil, and S. Maeder, Anal. Bioanal. Chem., 412, 2675 (2020); https://doi.org/10.1007/s00216-020-02502-1
- https://www.ccohs.ca/oshanswers/psychosocial/ets_health.html
- N. Borduas, J.G. Murphy, C. Wang, G. da Silva and J.P.D. Abbatt, Environ. Sci. Technol. Lett., 3, 327 (2016); https://doi.org/10.1021/acs.estlett.6b00231
- M. Shein and G. Jeschke, Chem. Res. Toxicol., 32, 1289 (2019); https://doi.org/10.1021/acs.chemrestox.9b00085
References
A. Rodgman and T.A. Perfetti, The Chemical Components of Tobacco and Tobacco Smoke, Boca Raton: CRC Press, Edn. 2 (2013).
G.R. Hanson, P.J. Venturelli and A.E. Fleckenstein, Drugs and Society, World Headquarters Jones & Bartlett Learning, Burlington, Edn 14 (2021).
C. Pickford, Tobacco Production, Amazon Digital Services, LLC – KDP Print (2019).
R.R. Baker, J. Anal. Appl. Pyrolysis, 11, 555 (1987); https://doi.org/10.1016/0165-2370(87)85054-4
D.M. Burns, E. Dybing, N. Gray, S. Hecht, C. Anderson, T. Sanner, R. O’Connor, M. Djordjevic, C. Dresler, P. Hainaut, M. Jarvis, A. Opperhuizen and K. Straif, Tob. Control, 17, 132 (2008); https://doi.org/10.1136/tc.2007.024158
U.S. Food and Drug Administration, Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke; Established List April 2012. Vol 77, No 64, FR 20034-37, Federal Register; (Accessed 10 Dec 2019); https://www.gpo.gov/fdsys/pkg/FR-2012-04-03/pdf/2012-7727.pdf
International Agency for Research on Cancer, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Tobacco Smoke and Involuntary Smoking, IARC, Lyon, France, vol. 83 (2004).
E.F. Domino, E. Hornbach and T. Demana, N. Engl. J. Med., 329, 437 (1993); https://doi.org/10.1056/NEJM199308053290619
B. Siegmund, E. Leitner and W. Pfannhauser, J. Agric. Food Chem., 47, 3113 (1999); https://doi.org/10.1021/jf990089w
J.A. Dani, Int. Rev. Neurobiol., 124, 3 (2015); https://doi.org/10.1016/bs.irn.2015.07.001
A. Dau, P. Komal, M. Truong, G. Morris, G. Evans and R. Nashmi, BMC Neurosci., 14, 47 (2013); https://doi.org/10.1186/1471-2202-14-47
L.R. LaRowe and J.W. Ditre, Pain, 161, 1688 (2020); https://doi.org/10.1097/j.pain.0000000000001874
T. Bush, J.C. Lovejoy, M. Deprey and K.M. Carpenter, Obesity, 24, 1834 (2016); https://doi.org/10.1002/oby.21582
M.R. Picciotto and P.J. Kenny, Cold Spring Harb. Perspect. Med., 3, a012112 (2013); https://doi.org/10.1101/cshperspect.a012112
Y.S. Mineur, A. Abizaid, Y. Rao, R. Salas, R.J. DiLeone, D. Gündisch, S. Diano, M. De Biasi, T.L. Horvath, X.B. Gao and M.R. Picciotto, Science, 332, 1330 (2011); https://doi.org/10.1126/science.1201889
N.L. Benowitz, J. Hukkanen and P. Jacob, eds: J.E. Henningfield, E.D. London and S. Pogun, Nicotine Chemistry, Metabolism, Kinetics and Biomarkers, In: Nicotine Psychopharmacology; Handbook of Experi-mental Pharmacology, Springer: Berlin, Heidelberg, vol. 192 (2009); https://doi.org/10.1007/978-3-540-69248-5_2
J.J. Prochaska and N.L. Benowitz, Sci. Adv., 5, eaay9763 (2019); https://doi.org/10.1126/sciadv.aay9763
N.L. Benowitz, Annu. Rev. Pharmacol. Toxicol., 49, 57 (2009); https://doi.org/10.1146/annurev.pharmtox.48.113006.094742
B. Mayer, Arch Toxicol., 88, 5 (2014); https://doi.org/10.1007/s00204-013-1127-0
J. Morgan, A.K. Breitbarth and A.L. Jones, Intern. Med. J., 49, 110 (2019); https://doi.org/10.1111/imj.14176
https://pubchem.ncbi.nlm.nih.gov/compound/Nicotine
https://www.acs.org/content/acs/en/molecule-of-the-week/archive/n/nicotine.html
A.K. Duell, J.F. Pankow and D.H. Peyton, Tob. Control, 29, 055275 (2019); https://doi.org/10.1136/tobaccocontrol-2019-055275
V.V. Gholap, R.S. Heyder, L. Kosmider and M.S. Halquist, J. Anal. Methods Chem., 2020, 6178570 (2020); https://doi.org/10.1155/2020/6178570
P. Atkins, J. de Paula and J. Keeler, Atkins’ Physical Chemistry, Oxford University Press, Oxford, Edn. 11 (2017).
R. Stabbert, R. Dempsey, J. Diekmann, C. Euchenhofer, T. Hagemeister, H.-J. Haussmann, A. Knorr, B.P. Mueller, P. Pospisil, W. Reininghaus, E. Roemer, F.J. Tewes and D.J. Veltel, Toxicol. In Vitro, 42, 222 (2017); https://doi.org/10.1016/j.tiv.2017.04.003
P. Pratte, S. Cosandey and C. Goujon Ginglinger, Hum. Exp. Toxicol., 36, 1115 (2017); https://doi.org/10.1177/0960327116681653
P. Pratte, S. Cosandey and C.G. Ginglinger, J. Aerosol Sci., 120, 52 (2018); https://doi.org/10.1016/j.jaerosci.2017.12.011
N. Mallock, E. Pieper, C. Hutzler, F. Henkler-Stephani and A. Luch, Front Public Health, 7, 287 (2019); https://doi.org/10.3389/fpubh.2019.00287
V. Cozzani, F. Barontini, T. McGrath, B. Mahler, M. Nordlund, M. Smith, J.P. Schaller and G. Zuber, Thermochim. Acta, 684, 178475 (2020); https://doi.org/10.1016/j.tca.2019.178475
S. Boue, W.K. Schlage, D. Page, J. Hoeng and M.C. Peitsch, Regul. Toxicol. Pharmacol., 104, 115 (2019); https://doi.org/10.1016/j.yrtph.2019.03.007
J.E. Chavarrio-Cañas, M. Monge-Palacios, E. Grajales-González and S.M. Sarathy, J. Phys. Chem. A, 125, 3177 (2021); https://doi.org/10.1021/acs.jpca.1c01650
G. Jaccard, A. Kondylis, I. Gunduz, J. Pijnenburg and M. Belushkin, Regul. Toxicol. Pharmacol., 97, 103 (2018); https://doi.org/10.1016/j.yrtph.2018.06.011
Aerosols and their Relation to Global Climate and Climate Sensitivity; Learn Science at Scitable; https://www.nature.com/scitable/knowledge/library/aerosols-and-their-relation-to-global-climate1102215345/
Atmospheric Aerosols: What Are They, and Why Are They So Important?; https://www.nasa.gov/centers/langley/news/factsheets/Aerosols.html
M.R. Smith, B. Clark, F. Ludicke, J.-P. Schaller, P. Vanscheeuwijck, J. Hoeng and M.C. Peitsch, Regul. Toxicol. Pharmacol., 81, S17 (2016); https://doi.org/10.1016/j.yrtph.2016.07.006
V. Zenzen, J. Diekmann, B. Gerstenberg, S. Weber, S. Wittke and M.K. Schorp, Regul. Toxicol. Pharmacol., 64, S11 (2012); https://doi.org/10.1016/j.yrtph.2012.08.004
J.-P. Schaller, J.P.M. Pijnenburg, A. Ajithkumar and A.R. Tricker, Regul. Toxicol. Pharmacol., 81, S48 (2016); https://doi.org/10.1016/j.yrtph.2016.10.016
J.-P. Schaller, D. Keller, L. Poget, P. Pratte, E. Kaelin, D. McHugh, G. Cudazzo, D. Smart, A.R. Tricker, L. Gautier, M. Yerly, R. Reis Pires, S. Le Bouhellec, D. Ghosh, I. Hofer, E. Garcia, P. Vanscheeuwijck and S. Maeder, Regul. Toxicol. Pharmacol., 81, S27 (2016); https://doi.org/10.1016/j.yrtph.2016.10.001
M.P. Ibañez, D. Martin, A.G. Gonzálvez, H.H. Telle and Á.G. Ureña, Am. J. Anal. Chem., 10, 76 (2019); https://doi.org/10.4236/ajac.2019.103007
M.I. Mitova, N. Bielik, P.B. Campelos, C. Cluse, C.G. Goujon-Ginglinger, A. Jaquier, M. Gomez Lueso, S. Maeder, C. Pitton, L. Poget, J. Polier-Calame, M. Rotach, E.G.R. Rouget, M. Schaller, M. Tharin and V. Zaugg, Air Qual. Atmos. Health, 12, 807 (2019); https://doi.org/10.1007/s11869-019-00697-6
M.I. Mitova, P.B. Campelos, C.G. Goujon-Ginglinger, S. Maeder, N. Mottier, E.G.R. Rouget, M. Tharin and A.R. Tricker, Regul. Toxicol. Pharmacol., 80, 91 (2016); https://doi.org/10.1016/j.yrtph.2016.06.005
N. Mottier, M. Tharin, C. Cluse, J.-R. Crudo, M.G. Lueso, C.G. Goujon-Ginglinger, A. Jaquier, M.I. Mitova, E.G.R. Rouget, M. Schaller and J. Solioz, Talanta, 158, 165 (2016); https://doi.org/10.1016/j.talanta.2016.05.022
D. Thorne, A. Dalrymple, D. Dillon, M. Duke and C. Meredith, Inhal. Toxicol., 27, 629 (2015); https://doi.org/10.3109/08958378.2015.1080773
M.C. Bentley, M. Almstetter, D. Arndt, A. Knorr, E. Martin, P. Pospisil, and S. Maeder, Anal. Bioanal. Chem., 412, 2675 (2020); https://doi.org/10.1007/s00216-020-02502-1
https://www.ccohs.ca/oshanswers/psychosocial/ets_health.html
N. Borduas, J.G. Murphy, C. Wang, G. da Silva and J.P.D. Abbatt, Environ. Sci. Technol. Lett., 3, 327 (2016); https://doi.org/10.1021/acs.estlett.6b00231
M. Shein and G. Jeschke, Chem. Res. Toxicol., 32, 1289 (2019); https://doi.org/10.1021/acs.chemrestox.9b00085