Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Quantum Chemical Calculations of Reaction Mechanism of Carbothermal Reduction of TiO2 in Vacuum
Corresponding Author(s) : H.Y. Sun
Asian Journal of Chemistry,
Vol. 27 No. 6 (2015): Vol 27 Issue 6
Abstract
Density functional theory with generalized gradient approximation was used to preliminarily study the reaction mechanism of carbothermal reduction of TiO2 on the material studies by quantum chemical calculations. The results show that in the beginning reaction of carbothermal reduction of TiO2, the solid-solid reaction mainly occurs between TiO2 and carbon. In the initial reaction stage of carbothermal reaction of TiO2, the low-valence titanium oxide TiOx (x < 2) and carbon monoxide gas will be easily produced and the probability of TiCxO1-x is very low. The gas-solid reaction between TiOx (x < 2) and carbon monoxide occurred easily with the reaction proceeding and finally TiC was obtained.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Gotoh, K. Fujimura, M. Koike, Y. Ohkoshi, M. Nagura, K. Akamatsu and S. Deki, Mater. Res. Bull., 36, 2263 (2001); doi:10.1016/S0025-5408(01)00713-9.
- S. Zhang, C.H. Zhang, W.W. Wu, M.C. Wang, C.S. Liu, S.Z. Li and S. Li, Acta Metall. Sin., 38, (2002).
- W. Sen, B.Q. Xu, B. Yang, H.Y. Sun, J.X. Song, H.L. Wan and Y.N. Dai, Trans. Nonferrous Met. Soc., 21, 185 (2011); doi:10.1016/S1003-6326(11)60697-3.
- Y.C. Woo, H.J. Kang and D.J. Kim, J. Eur. Ceram. Soc., 27, 719 (2007); doi:10.1016/j.jeurceramsoc.2006.04.090.
- L.M. Berger and W. Gruner, Int. J. Refract. Met. Hard Mater., 20, 235 (2002); doi:10.1016/S0263-4368(02)00019-7.
- D.P. Xiang, Y. Liu, S.J. Gao and M.J. Tu, J. Mater. Charact., 59, 241 (2008); doi:10.1016/j.matchar.2006.12.011.
- D.P. Xiang, Ph.D. Thesis, Applied Fundamental Research on Preparation of Ti(C,N) based on Carbothermal Reduction-Nitridation of Nano-TiO2, Peking University, Peking, China (2005).
- A. Afir, M. Achour and N. Saoula, J. Alloys Comp., 288, 124 (1999); doi:10.1016/S0925-8388(99)00112-7.
- A. Maitre, D. Tetard and P. Lefort, J. Eur. Ceram. Soc., 20, 15 (2000); doi:10.1016/S0955-2219(99)00074-6.
- L.M. Berger, W. Gruner, E. Langholf and S. Stolle, Int. J. Refract. Met. Hard Mater., 17, 235 (1999); doi:10.1016/S0263-4368(98)00077-8.
- Y.F. Li, J.Q. Zhu, H. Liu, P. Wang and P.H. Tian, Acta Phys. Chim. Sin., 27, 1081 (2011); doi:10.3866/PKU.WHXB20110516.
- J.K. Yan, G.Y. Gan, F. Jing, J.C. Chen and B. Xiao, Acta Phys. Sin., 57, 3769 (2008).
- M. Menetrey, A. Markovits and C. Minot, Surf. Sci., 524, 49 (2003); doi:10.1016/S0039-6028(02)02464-0.
- P. Gianfranco, M.F. Anna, S.B. Paul, Surf. Sci., 350, (1996).
- J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996); doi:10.1103/PhysRevLett.77.3865.
- Y.H. Cheng, X.L. Chen, X.J. Xie, H. Cui and W.T. Feng, The Tenth National Conference on Engineering Dielectrics, Chengdu, Sichuan, China, Oct 28-30 (2005).
References
Y. Gotoh, K. Fujimura, M. Koike, Y. Ohkoshi, M. Nagura, K. Akamatsu and S. Deki, Mater. Res. Bull., 36, 2263 (2001); doi:10.1016/S0025-5408(01)00713-9.
S. Zhang, C.H. Zhang, W.W. Wu, M.C. Wang, C.S. Liu, S.Z. Li and S. Li, Acta Metall. Sin., 38, (2002).
W. Sen, B.Q. Xu, B. Yang, H.Y. Sun, J.X. Song, H.L. Wan and Y.N. Dai, Trans. Nonferrous Met. Soc., 21, 185 (2011); doi:10.1016/S1003-6326(11)60697-3.
Y.C. Woo, H.J. Kang and D.J. Kim, J. Eur. Ceram. Soc., 27, 719 (2007); doi:10.1016/j.jeurceramsoc.2006.04.090.
L.M. Berger and W. Gruner, Int. J. Refract. Met. Hard Mater., 20, 235 (2002); doi:10.1016/S0263-4368(02)00019-7.
D.P. Xiang, Y. Liu, S.J. Gao and M.J. Tu, J. Mater. Charact., 59, 241 (2008); doi:10.1016/j.matchar.2006.12.011.
D.P. Xiang, Ph.D. Thesis, Applied Fundamental Research on Preparation of Ti(C,N) based on Carbothermal Reduction-Nitridation of Nano-TiO2, Peking University, Peking, China (2005).
A. Afir, M. Achour and N. Saoula, J. Alloys Comp., 288, 124 (1999); doi:10.1016/S0925-8388(99)00112-7.
A. Maitre, D. Tetard and P. Lefort, J. Eur. Ceram. Soc., 20, 15 (2000); doi:10.1016/S0955-2219(99)00074-6.
L.M. Berger, W. Gruner, E. Langholf and S. Stolle, Int. J. Refract. Met. Hard Mater., 17, 235 (1999); doi:10.1016/S0263-4368(98)00077-8.
Y.F. Li, J.Q. Zhu, H. Liu, P. Wang and P.H. Tian, Acta Phys. Chim. Sin., 27, 1081 (2011); doi:10.3866/PKU.WHXB20110516.
J.K. Yan, G.Y. Gan, F. Jing, J.C. Chen and B. Xiao, Acta Phys. Sin., 57, 3769 (2008).
M. Menetrey, A. Markovits and C. Minot, Surf. Sci., 524, 49 (2003); doi:10.1016/S0039-6028(02)02464-0.
P. Gianfranco, M.F. Anna, S.B. Paul, Surf. Sci., 350, (1996).
J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996); doi:10.1103/PhysRevLett.77.3865.
Y.H. Cheng, X.L. Chen, X.J. Xie, H. Cui and W.T. Feng, The Tenth National Conference on Engineering Dielectrics, Chengdu, Sichuan, China, Oct 28-30 (2005).