Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Computational Investigation of Hydrogen Storage Capacity of Boron Nitride Nanocages by Newly Developed PM7 Method
Corresponding Author(s) : Armagan Kinal
Asian Journal of Chemistry,
Vol. 27 No. 2 (2015): Vol 27 Issue 2
Abstract
Employing the newly developed PM7 method,we have computationally investigated endohedral hydrogen storage capacities of boron-nitride based nanocages, BmNm (m = 12, 24, 36, 48 and 96). The calculation results revealed that the smallest two boron-nitride nanocages, B12N12 and B24N24, (their gravimetric density of hydrogen storages are 1.35 and 3.05 wt. %) are not suitable for hydrogen doping due to their rather small endohedral cavities. B36N36, whose hydrogen storage density is 4.96 wt. %, may not be very efficient although it has better storage capacity than the smallest two. On the other hand, the gravimetric densities of hydrogen storage inside the B48N48 and B96N96 nanocages are predicted to be 6.6 and 10.6 wt. %, respectively. This high weight percentage of hydrogen storage indicates that B48N48 and B96N96 can be considered as promising hydrogen storage materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.A.J. Rand and R.M. Dell, Hydrogen Energy, Challenges and Prospects (RSC Energy Series), Royal Society of Chemistry; Cambridge, UK, Ch. 5, p. 146 (2008).
- L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001); doi:10.1038/35104634.
- A. Zuttel, A. Remhof, A. Borgschulte and O. Friedrichs, Phil. Trans. Royal Soc. A, 368, 3329 (2010); doi:10.1098/rsta.2010.0113.
- J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao and J. Yang, Int. J. Hydrogen Energy, 37, 1048 (2012); doi:10.1016/j.ijhydene.2011.02.125.
- A. Züttel, Mater. Today, 6, 24 (2003); doi:10.1016/S1369-7021(03)00922-2.
- W.Q. Deng, X. Xu and W.A. Goddard, Phys. Rev. Lett., 92, 166103 (2004); doi:10.1103/PhysRevLett.92.166103.
- Z.X. Yang, Y.D. Xia and R. Mokaya, J. Am. Chem. Soc., 129, 1673 (2007); doi:10.1021/ja067149g.
- R.T. Yang, Carbon, 38, 623 (2000); doi:10.1016/S0008-6223(99)00273-0.
- H. Kajiura, S. Tsutsui, K. Kadono, M. Kakuta, M. Ata and Y. Murakami, Appl. Phys. Lett., 82, 1105 (2003); doi:10.1063/1.1555262.
- M. Ritschel, M. Uhlemann, O. Gutfleisch, A. Leonhardt, A. Graff, Ch. Täschner and J. Fink, Appl. Phys. Lett., 80, 2985 (2002); doi:10.1063/1.1469680.
- J.Y. Lee, C.D. Wood, D. Brandshaw, M.J. Rosseinksy and A.I. Cooper, Chem. Commun., 2670 (2006); doi:10.1039/B604625H.
- P.M. Budd, A. Butler, J. Selbie, K. Mahmood, N.B. McKeown, B. Ghanem, K. Msayib, D. Book and A. Walton, Phys. Chem. Chem. Phys., 9, 1802 (2007); doi:10.1039/b618053a.
- J.L.C. Rowsell and O.M. Yaghi, Angew. Chem. Int. Ed., 44, 4670 (2005); doi:10.1002/anie.200462786.
- Y.W. Li and R.T. Yang, J. Am. Chem. Soc., 128, 8136 (2006); doi:10.1021/ja061681m.
- G.E. Froudakis, Nano Lett., 1, 179 (2001); doi:10.1021/nl015504p.
- G.E. Froudakis, Mater. Today, 14, 324 (2011); doi:10.1016/S1369-7021(11)70162-6.
- N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie and A. Zettl, Science, 269, 966 (1995); doi:10.1126/science.269.5226.966.
- P. Wang, S. Orimo, T. Matsushima, H. Fujii and G. Majer, Appl. Phys. Lett., 80, 318 (2002); doi:10.1063/1.1432447.
- R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu and D. Wu, J. Am. Chem. Soc., 124, 7672 (2002); doi:10.1021/ja026030e.
- G. Mpourmpakis and G.E. Froudakis, Catal. Today, 120, 341 (2007); doi:10.1016/j.cattod.2006.09.023.
- Q. Sun, Q. Wang and P. Jena, Nano Lett., 5, 1273 (2005); doi:10.1021/nl050385p.
- J. Li, J. Lin, X. Xu, X. Zhang, Y. Xue, J. Mi, Z. Mo, Y. Fan, L. Hu, X. Yang, J. Zhang, F. Meng, S. Yuan and C. Tang, Nanotechnology, 24, 155603 (2013); doi:10.1088/0957-4484/24/15/155603.
- J.J.P. Stewart, J. Mol. Model., 19, 1 (2013); doi:10.1007/s00894-012-1667-x.
- J. Hostas, J. Rezác and P. Hobza, Chem. Phys. Lett., 568, 161 (2013); doi:10.1016/j.cplett.2013.02.069.
- J.J.P. Stewart, MOPAC2012, Stewart Computational Chemistry, Colorado Springs, CO, USA (2012); http://OpenMOPAC.net.
- S. Sayhan and A. Kinal, Asian J. Chem., 26, 5935 (2014); doi:10.14233/ajchem.2014.16335.
- http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf.
- N. Koi and T. Oku, Solid State Commun., 131, 121 (2004); doi:10.1016/j.ssc.2004.04.037.
References
D.A.J. Rand and R.M. Dell, Hydrogen Energy, Challenges and Prospects (RSC Energy Series), Royal Society of Chemistry; Cambridge, UK, Ch. 5, p. 146 (2008).
L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001); doi:10.1038/35104634.
A. Zuttel, A. Remhof, A. Borgschulte and O. Friedrichs, Phil. Trans. Royal Soc. A, 368, 3329 (2010); doi:10.1098/rsta.2010.0113.
J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao and J. Yang, Int. J. Hydrogen Energy, 37, 1048 (2012); doi:10.1016/j.ijhydene.2011.02.125.
A. Züttel, Mater. Today, 6, 24 (2003); doi:10.1016/S1369-7021(03)00922-2.
W.Q. Deng, X. Xu and W.A. Goddard, Phys. Rev. Lett., 92, 166103 (2004); doi:10.1103/PhysRevLett.92.166103.
Z.X. Yang, Y.D. Xia and R. Mokaya, J. Am. Chem. Soc., 129, 1673 (2007); doi:10.1021/ja067149g.
R.T. Yang, Carbon, 38, 623 (2000); doi:10.1016/S0008-6223(99)00273-0.
H. Kajiura, S. Tsutsui, K. Kadono, M. Kakuta, M. Ata and Y. Murakami, Appl. Phys. Lett., 82, 1105 (2003); doi:10.1063/1.1555262.
M. Ritschel, M. Uhlemann, O. Gutfleisch, A. Leonhardt, A. Graff, Ch. Täschner and J. Fink, Appl. Phys. Lett., 80, 2985 (2002); doi:10.1063/1.1469680.
J.Y. Lee, C.D. Wood, D. Brandshaw, M.J. Rosseinksy and A.I. Cooper, Chem. Commun., 2670 (2006); doi:10.1039/B604625H.
P.M. Budd, A. Butler, J. Selbie, K. Mahmood, N.B. McKeown, B. Ghanem, K. Msayib, D. Book and A. Walton, Phys. Chem. Chem. Phys., 9, 1802 (2007); doi:10.1039/b618053a.
J.L.C. Rowsell and O.M. Yaghi, Angew. Chem. Int. Ed., 44, 4670 (2005); doi:10.1002/anie.200462786.
Y.W. Li and R.T. Yang, J. Am. Chem. Soc., 128, 8136 (2006); doi:10.1021/ja061681m.
G.E. Froudakis, Nano Lett., 1, 179 (2001); doi:10.1021/nl015504p.
G.E. Froudakis, Mater. Today, 14, 324 (2011); doi:10.1016/S1369-7021(11)70162-6.
N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie and A. Zettl, Science, 269, 966 (1995); doi:10.1126/science.269.5226.966.
P. Wang, S. Orimo, T. Matsushima, H. Fujii and G. Majer, Appl. Phys. Lett., 80, 318 (2002); doi:10.1063/1.1432447.
R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu and D. Wu, J. Am. Chem. Soc., 124, 7672 (2002); doi:10.1021/ja026030e.
G. Mpourmpakis and G.E. Froudakis, Catal. Today, 120, 341 (2007); doi:10.1016/j.cattod.2006.09.023.
Q. Sun, Q. Wang and P. Jena, Nano Lett., 5, 1273 (2005); doi:10.1021/nl050385p.
J. Li, J. Lin, X. Xu, X. Zhang, Y. Xue, J. Mi, Z. Mo, Y. Fan, L. Hu, X. Yang, J. Zhang, F. Meng, S. Yuan and C. Tang, Nanotechnology, 24, 155603 (2013); doi:10.1088/0957-4484/24/15/155603.
J.J.P. Stewart, J. Mol. Model., 19, 1 (2013); doi:10.1007/s00894-012-1667-x.
J. Hostas, J. Rezác and P. Hobza, Chem. Phys. Lett., 568, 161 (2013); doi:10.1016/j.cplett.2013.02.069.
J.J.P. Stewart, MOPAC2012, Stewart Computational Chemistry, Colorado Springs, CO, USA (2012); http://OpenMOPAC.net.
S. Sayhan and A. Kinal, Asian J. Chem., 26, 5935 (2014); doi:10.14233/ajchem.2014.16335.
N. Koi and T. Oku, Solid State Commun., 131, 121 (2004); doi:10.1016/j.ssc.2004.04.037.