Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Nanocellulose from Lignocellulosic Agricultural Biomass by Acid Hydrolysis
Corresponding Author(s) : J.K. Prasannakumar
Asian Journal of Chemistry,
Vol. 34 No. 10 (2022): Vol 34 Issue 10, 2022
Abstract
The present study emphasizes lignocellulosic materials like agricultural biomass such as ragi stalk also known as Finger Millet Stalk (Eleusine coracana), mango wood (Mangifera caesia) and groundnut husk (Arachis hypogaea) were transformed into cellulose by pretreatment with 5% NaOH and 5% NaClO2 solution. In addition, the cellulose obtained was transformed into nanocellulose (NC) using acid hydrolysis, ultrasonication and centrifugation. The X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry and differential thermal analysis (TGA/DTA) were used to characterize the synthesized nanocellulose. According to the FTIR findings, the chemical structure of cellulose synthesized from these agricultural biomasses was not affected by the synthetic approach, however, the synthetic procedure employed affects the morphology/surface topology of synthesized nanocellulose as confirmed by SEM. XRD studies reveal the crystalline and semi-crystalline nature of the synthesized nanocellulose. TEM monographs illustrate the surface structure and size of the synthesized nanocellulose ranging from 8 to 17 nm. The thermal stability of nanocellulose is revealed by TGA/DTA studies and the obtained nanocellulose shows thermal stability in the range of 240 to 327 ºC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Pokrajac, A. Abbas, W. Chrzanowski, G.M. Dias, B.J. Eggleton, S. Maguire, E. Maine, T. Malloy, J. Nathwani, L. Nazar, A. Sips, J. Sone, A. van den Berg, P.S. Weiss and S. Mitra, ACS Nano, 15, 18606 (2021); https://doi.org/10.1021/acsnano.1c10919
- A. Yamaguchi, H. Sakamoto, T. Kitamura, M. Hashimoto and S.I. Suye, Colloids Surf. B Biointerfaces, 183, 110392 (2019); https://doi.org/10.1016/j.colsurfb.2019.110392
- M.J. Dunlop, C. Clemons, R. Reiner, R. Sabo, U.P. Agarwal, R. Bissessur, H. Sojoudiasli, P.J. Carreau and B. Acharya, Sci. Rep., 10, 19090 (2020); https://doi.org/10.1038/s41598-020-76144-9
- E. Espinosa, R. Sánchez, R. Otero, J. Domínguez-Robles and A. Rodríguez, Int. J. Biol. Macromol., 103, 990 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.156
- T. Hosoya, M. Bacher, A. Potthast, T. Elder and T. Rosenau, Cellulose, 25, 3797 (2018); https://doi.org/10.1007/s10570-018-1835-y
- R.J. Moon, A. Martini, J. Nairn, J. Simonsen and J. Youngblood, Chem. Soc. Rev., 40, 3941 (2011); https://doi.org/10.1039/c0cs00108b
- M. Wohlert, T. Benselfelt, L. Wågberg, I. Furó, L.A. Berglund and J. Wohlert, Cellulose, 29, 1 (2022); https://doi.org/10.1007/s10570-021-04325-4
- A.C. Khazraji and S. Robert, J. Nanomater., 2013, 409676 (2013); https://doi.org/10.1155/2013/409676
- M.L. Mansfield, Macromolecules, 20, 1384 (1987); https://doi.org/10.1021/ma00172a036
- H. Golmohammadi, E. Morales-Narváez, T. Naghdi and A. Merkoçi, Chem. Mater., 29, 5426 (2017); https://doi.org/10.1021/acs.chemmater.7b01170
- O. Faruk, M. Sain, R. Farnood, Y. Pan and H. Xiao, J. Polym. Environ., 22, 279 (2014); https://doi.org/10.1007/s10924-013-0631-x
- L.O. Pinto, J.S. Bernardes and C.A. Rezende, Carbohydr. Polym., 218, 145 (2019); https://doi.org/10.1016/j.carbpol.2019.04.070
- E.S. Ferreira and C.A. Rezende, ACS Sustain. Chem. & Eng., 6, 14365 (2018); https://doi.org/10.1021/acssuschemeng.8b03071
- J.P.S. Morais, M.F. Rosa, M.M. de Souza Filho, L.D. Nascimento, D.M. do Nascimento and A.R. Cassales, Carbohydr. Polym., 91, 229 (2013); https://doi.org/10.1016/j.carbpol.2012.08.010
- Ú. Fillat, B. Wicklein, R. Martín-Sampedro, D. Ibarra, E. Ruiz-Hitzky, C. Valencia, A. Sarrión, E. Castro and M.E. Eugenio, Carbohydr. Polym., 179, 252 (2018); https://doi.org/10.1016/j.carbpol.2017.09.072
- Y. Liu, Y. Sui, C. Liu, C. Liu, M. Wu, B. Li and Y. Li, Carbohydr. Polym., 188, 27 (2018); https://doi.org/10.1016/j.carbpol.2018.01.093
- E. Espinosa, I. Bascón-Villegas, A. Rosal, F. Pérez-Rodríguez, G. ChingaCarrasco and A. Rodríguez, Int. J. Biol. Macromol., 141, 197 (2019); https://doi.org/10.1016/j.ijbiomac.2019.08.262
- P. Jagadesh, A. Ramachandramurthy and R. Murugesan, Constr. Build. Mater., 176, 608 (2018); https://doi.org/10.1016/j.conbuildmat.2018.05.037
- N. Lin and A. Dufresne, Eur. Polym. J., 59, 302 (2014); https://doi.org/10.1016/j.eurpolymj.2014.07.025
- S. Liu, G. Cheng, Y. Xiong, Y. Ding and X. Luo, J. Hazard. Mater., 384, 121195 (2020); https://doi.org/10.1016/j.jhazmat.2019.121195
- L. Feng and Z.L. Chen, J. Mol. Liq., 142, 1 (2008); https://doi.org/10.1016/j.molliq.2008.06.007
- W.T. Wulandari, A. Rochliadi and I.M. Arcana, IOP Conf. Ser.: Mater. Sci. Eng., 107, 012045 (2016); https://doi.org/10.1088/1757-899X/107/1/012045
- M.S. Mohaiyiddin, H.L. Ong, M.B.H. Othman, N.M. Julkapli, A.R.C. Villagracia and H. Md. Akil, Polym. Compos., 39, E561 (2018); https://doi.org/10.1002/pc.24712
- Y. Habibi, L.A. Lucia and O.J. Rojas, Chem. Rev., 110, 3479 (2010); https://doi.org/10.1021/cr90s0339w
- B. Deepa, E. Abraham, B.M. Cherian, A. Bismarck, J.J. Blaker, L.A. Pothan, A.L. Leao, S.F. de Souza and M. Kottaisamy, Bioresour. Technol., 102, 1988 (2011); https://doi.org/10.1016/j.biortech.2010.09.030
- F. Jiang and Y.L. Hsieh, Carbohydr. Polym., 95, 32 (2013); https://doi.org/10.1016/j.carbpol.2013.02.022
- M.A. Hubbe, O.J. Rojas, L.A. Lucia and M. Sain, BioResources, 3, 929 (2008); https://doi.org/10.15376/biores.3.3.929-980
- M. Mahardika, H. Abral, A. Kasim, S. Arief and M. Asrofi, Fibers, 6, 28 (2018); https://doi.org/10.3390/fib6020028
- M. Asrofi, H. Abral, A. Kasim, A. Pratoto, M. Mahardika, J.W. Park and H.J. Kim, Fibers Polym., 19, 1618 (2018); https://doi.org/10.1007/s12221-018-7953-1
- Y. Wang, X. Wei, J. Li, F. Wang, Q. Wang, Y. Zhang and L. Kong, Ind. Crops Prod., 104, 237 (2017); https://doi.org/10.1016/j.indcrop.2017.04.032
- L. Brinchi, F. Cotana, E. Fortunati and J.M. Kenny, Carbohydr. Polym., 94, 154 (2013); https://doi.org/10.1016/j.carbpol.2013.01.033
- N. Wang, E. Ding and R. Cheng, Polymer, 48, 3486 (2007); https://doi.org/10.1016/j.polymer.2007.03.062
- X.M. Dong, J.-F. Revol and D.G. Gray, Cellulose, 5, 19 (1998); https://doi.org/10.1023/A:1009260511939
- S. Sasmal and K. Mohanty, Pretreatment of Lignocellulosic Biomass toward Biofuel Production; In: Biorefining of Biomass to Biofuels, pp. 203-221, Springer, Cham (2018).
References
L. Pokrajac, A. Abbas, W. Chrzanowski, G.M. Dias, B.J. Eggleton, S. Maguire, E. Maine, T. Malloy, J. Nathwani, L. Nazar, A. Sips, J. Sone, A. van den Berg, P.S. Weiss and S. Mitra, ACS Nano, 15, 18606 (2021); https://doi.org/10.1021/acsnano.1c10919
A. Yamaguchi, H. Sakamoto, T. Kitamura, M. Hashimoto and S.I. Suye, Colloids Surf. B Biointerfaces, 183, 110392 (2019); https://doi.org/10.1016/j.colsurfb.2019.110392
M.J. Dunlop, C. Clemons, R. Reiner, R. Sabo, U.P. Agarwal, R. Bissessur, H. Sojoudiasli, P.J. Carreau and B. Acharya, Sci. Rep., 10, 19090 (2020); https://doi.org/10.1038/s41598-020-76144-9
E. Espinosa, R. Sánchez, R. Otero, J. Domínguez-Robles and A. Rodríguez, Int. J. Biol. Macromol., 103, 990 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.156
T. Hosoya, M. Bacher, A. Potthast, T. Elder and T. Rosenau, Cellulose, 25, 3797 (2018); https://doi.org/10.1007/s10570-018-1835-y
R.J. Moon, A. Martini, J. Nairn, J. Simonsen and J. Youngblood, Chem. Soc. Rev., 40, 3941 (2011); https://doi.org/10.1039/c0cs00108b
M. Wohlert, T. Benselfelt, L. Wågberg, I. Furó, L.A. Berglund and J. Wohlert, Cellulose, 29, 1 (2022); https://doi.org/10.1007/s10570-021-04325-4
A.C. Khazraji and S. Robert, J. Nanomater., 2013, 409676 (2013); https://doi.org/10.1155/2013/409676
M.L. Mansfield, Macromolecules, 20, 1384 (1987); https://doi.org/10.1021/ma00172a036
H. Golmohammadi, E. Morales-Narváez, T. Naghdi and A. Merkoçi, Chem. Mater., 29, 5426 (2017); https://doi.org/10.1021/acs.chemmater.7b01170
O. Faruk, M. Sain, R. Farnood, Y. Pan and H. Xiao, J. Polym. Environ., 22, 279 (2014); https://doi.org/10.1007/s10924-013-0631-x
L.O. Pinto, J.S. Bernardes and C.A. Rezende, Carbohydr. Polym., 218, 145 (2019); https://doi.org/10.1016/j.carbpol.2019.04.070
E.S. Ferreira and C.A. Rezende, ACS Sustain. Chem. & Eng., 6, 14365 (2018); https://doi.org/10.1021/acssuschemeng.8b03071
J.P.S. Morais, M.F. Rosa, M.M. de Souza Filho, L.D. Nascimento, D.M. do Nascimento and A.R. Cassales, Carbohydr. Polym., 91, 229 (2013); https://doi.org/10.1016/j.carbpol.2012.08.010
Ú. Fillat, B. Wicklein, R. Martín-Sampedro, D. Ibarra, E. Ruiz-Hitzky, C. Valencia, A. Sarrión, E. Castro and M.E. Eugenio, Carbohydr. Polym., 179, 252 (2018); https://doi.org/10.1016/j.carbpol.2017.09.072
Y. Liu, Y. Sui, C. Liu, C. Liu, M. Wu, B. Li and Y. Li, Carbohydr. Polym., 188, 27 (2018); https://doi.org/10.1016/j.carbpol.2018.01.093
E. Espinosa, I. Bascón-Villegas, A. Rosal, F. Pérez-Rodríguez, G. ChingaCarrasco and A. Rodríguez, Int. J. Biol. Macromol., 141, 197 (2019); https://doi.org/10.1016/j.ijbiomac.2019.08.262
P. Jagadesh, A. Ramachandramurthy and R. Murugesan, Constr. Build. Mater., 176, 608 (2018); https://doi.org/10.1016/j.conbuildmat.2018.05.037
N. Lin and A. Dufresne, Eur. Polym. J., 59, 302 (2014); https://doi.org/10.1016/j.eurpolymj.2014.07.025
S. Liu, G. Cheng, Y. Xiong, Y. Ding and X. Luo, J. Hazard. Mater., 384, 121195 (2020); https://doi.org/10.1016/j.jhazmat.2019.121195
L. Feng and Z.L. Chen, J. Mol. Liq., 142, 1 (2008); https://doi.org/10.1016/j.molliq.2008.06.007
W.T. Wulandari, A. Rochliadi and I.M. Arcana, IOP Conf. Ser.: Mater. Sci. Eng., 107, 012045 (2016); https://doi.org/10.1088/1757-899X/107/1/012045
M.S. Mohaiyiddin, H.L. Ong, M.B.H. Othman, N.M. Julkapli, A.R.C. Villagracia and H. Md. Akil, Polym. Compos., 39, E561 (2018); https://doi.org/10.1002/pc.24712
Y. Habibi, L.A. Lucia and O.J. Rojas, Chem. Rev., 110, 3479 (2010); https://doi.org/10.1021/cr90s0339w
B. Deepa, E. Abraham, B.M. Cherian, A. Bismarck, J.J. Blaker, L.A. Pothan, A.L. Leao, S.F. de Souza and M. Kottaisamy, Bioresour. Technol., 102, 1988 (2011); https://doi.org/10.1016/j.biortech.2010.09.030
F. Jiang and Y.L. Hsieh, Carbohydr. Polym., 95, 32 (2013); https://doi.org/10.1016/j.carbpol.2013.02.022
M.A. Hubbe, O.J. Rojas, L.A. Lucia and M. Sain, BioResources, 3, 929 (2008); https://doi.org/10.15376/biores.3.3.929-980
M. Mahardika, H. Abral, A. Kasim, S. Arief and M. Asrofi, Fibers, 6, 28 (2018); https://doi.org/10.3390/fib6020028
M. Asrofi, H. Abral, A. Kasim, A. Pratoto, M. Mahardika, J.W. Park and H.J. Kim, Fibers Polym., 19, 1618 (2018); https://doi.org/10.1007/s12221-018-7953-1
Y. Wang, X. Wei, J. Li, F. Wang, Q. Wang, Y. Zhang and L. Kong, Ind. Crops Prod., 104, 237 (2017); https://doi.org/10.1016/j.indcrop.2017.04.032
L. Brinchi, F. Cotana, E. Fortunati and J.M. Kenny, Carbohydr. Polym., 94, 154 (2013); https://doi.org/10.1016/j.carbpol.2013.01.033
N. Wang, E. Ding and R. Cheng, Polymer, 48, 3486 (2007); https://doi.org/10.1016/j.polymer.2007.03.062
X.M. Dong, J.-F. Revol and D.G. Gray, Cellulose, 5, 19 (1998); https://doi.org/10.1023/A:1009260511939
S. Sasmal and K. Mohanty, Pretreatment of Lignocellulosic Biomass toward Biofuel Production; In: Biorefining of Biomass to Biofuels, pp. 203-221, Springer, Cham (2018).