Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Different Current Density on the Performance of Microbial Fuel Cell and Denitrification Activity
Corresponding Author(s) : Jiaquan Wang
Asian Journal of Chemistry,
Vol. 26 No. 6 (2014): Vol 26 Issue 6
Abstract
A dual-chamber microbial fuel cell with nitrate as the electron acceptor had been successfully constructed. Microbial fuel cell with electricity generation (closed circuit) improved the microbial denitrification process. The effect of current density on the performance of microbial fuel cell system and its denitrification activity in the system were also investigated. The nitrate reduction rate increased along with the increase of current density. At the highest current density (159.38 mA/m2), microbial fuel cell obtained the highest denitrifying rate (1.83 mg/L/day), max power density (22.7 mW/m2 ) and coulombic efficiency 63.1 %. The results showed the denitrification process in the cathodic chamber was strongly depended on the electricity current generated by the microbial fuel cell.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Park, D.K. Kim, Y.J. Choi and D. Pak, Process Biochem., 40, 3383 (2005); doi:10.1016/j.procbio.2005.03.017.
- O. Brylev, M. Sarrazin, L. Roué and D. Bélanger, Electrochim. Acta, 52, 6237 (2007); doi:10.1016/j.electacta.2007.03.072.
- J.M. Tront, J.D. Fortner, M. Plotze, J.B. Hughes and A.M. Puzrin, Biotechnol. Lett., 30, 1385 (2008); doi:10.1007/s10529-008-9707-4.
- P.J. Sturman, P.S. Stewart, A.B. Cunningham, E.J. Bouwer and J.H. Wolfram, J. Contam. Hydrol., 19, 171 (1995); doi:10.1016/0169-7722(95)00017-P.
- W.J. Payne, Denitrification, Wiley, New York (1981).
- J.M. Morris and S. Jin, Chem. Eng. J., 153, 127 (2009); doi:10.1016/j.cej.2009.06.023.
- S. Freguia, S. Tsujimura and K.J. Kano, Electrochim. Acta, 55, 813 (2010); doi:10.1016/j.electacta.2009.09.027.
- M. Kuroda, T. Watanabe and Y. Umedu, Water Sci. Technol., 34, 101 (1996); doi:10.1016/S0273-1223(96)00792-5.
- R.A. Rozendal, H.V.M. Hamelers and C.J.N. Buisman, Environ. Sci. Technol., 40, 5206 (2006); doi:10.1021/es060387r.
References
H. Park, D.K. Kim, Y.J. Choi and D. Pak, Process Biochem., 40, 3383 (2005); doi:10.1016/j.procbio.2005.03.017.
O. Brylev, M. Sarrazin, L. Roué and D. Bélanger, Electrochim. Acta, 52, 6237 (2007); doi:10.1016/j.electacta.2007.03.072.
J.M. Tront, J.D. Fortner, M. Plotze, J.B. Hughes and A.M. Puzrin, Biotechnol. Lett., 30, 1385 (2008); doi:10.1007/s10529-008-9707-4.
P.J. Sturman, P.S. Stewart, A.B. Cunningham, E.J. Bouwer and J.H. Wolfram, J. Contam. Hydrol., 19, 171 (1995); doi:10.1016/0169-7722(95)00017-P.
W.J. Payne, Denitrification, Wiley, New York (1981).
J.M. Morris and S. Jin, Chem. Eng. J., 153, 127 (2009); doi:10.1016/j.cej.2009.06.023.
S. Freguia, S. Tsujimura and K.J. Kano, Electrochim. Acta, 55, 813 (2010); doi:10.1016/j.electacta.2009.09.027.
M. Kuroda, T. Watanabe and Y. Umedu, Water Sci. Technol., 34, 101 (1996); doi:10.1016/S0273-1223(96)00792-5.
R.A. Rozendal, H.V.M. Hamelers and C.J.N. Buisman, Environ. Sci. Technol., 40, 5206 (2006); doi:10.1021/es060387r.