Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrical Contact Mechanism of Front Electrode Using Bi-Based Glass Frit in Si-Solar Cell
Corresponding Author(s) : Dong Hun Yeo
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
The front electrode of a solar cell must form an ohmic contact through the etching of the antireflection coating layer of a Si-wafer and glass frit helps the formation of an ohmic contact in the materials of the front electrode of a solar cell. Some studies have reported on the sintering mechanism of glass frit at the front electrode of a solar cell, but this has not been clearly investigated through experiment. Therefore, this study investigated the sintering mechanism of glass frit by the fabrication of Ag pastes to be applied to the front electrode of a solar cell by using glass frit commercially available in the electronic material field as well as by seeking glass frit conditions that allow efficient etching of the antireflection coating. The study found that Bi-based glass frit cause significant changes in contact resistance with variation of the etching degree of the SiNx layer in relation to the composition and amounts added. When the B composition’s added amount was 2.5 vol % among the Bi-based glass frit, it allowed sufficient etching of the SiNx layer. On the contrary, when the added amount was over or below, surface resistance increased.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Parida, S. Iniyan and R. Goic, Renew. Sustain. Energy Rev., 15, 1625 (2011); doi:10.1016/j.rser.2010.11.032.
- A. Assi and M. Al-Amin, Procedia Eng., 50, 246 (2012); doi:10.1016/j.proeng.2012.10.029.
- J.-T. Tsai and S.-T. Lin, J. Alloys Comp., 548, 105 (2013); doi:10.1016/j.jallcom.2012.09.018.
- G.C. Che, R.P. Mertens, R. Van Overstraeten and L. Frisson, IEEE Trans. Electron. Dev., 31, 602 (1984); doi:10.1109/T-ED.1984.21575.
- C. Ballif, D.M. Huljić, G. Willeke and A. Hessler-Wyser, Appl. Phys. Lett., 82, 1878 (2003); doi:10.1063/1.1562338.
- T. Nakajima, A. Kawakami and A. Tada, Int. J. Hybrid Microelectron., 6, 580 (1983).
- M.M. Hilali, B. To, A. Rohatgi and B. To, Proceedings of the 14th Workshop on Crystalline Silicon Solar Cells and Modules, Winter Park, CO, USA, August 2004.
- M.M. Hilali, S. Sridharan, C. Khadilkar, A. Shaikh, A. Rohatgi and S. Kim, J. Electron. Mater., 35, 2041 (2006); doi:10.1007/s11664-006-0311-x.
References
B. Parida, S. Iniyan and R. Goic, Renew. Sustain. Energy Rev., 15, 1625 (2011); doi:10.1016/j.rser.2010.11.032.
A. Assi and M. Al-Amin, Procedia Eng., 50, 246 (2012); doi:10.1016/j.proeng.2012.10.029.
J.-T. Tsai and S.-T. Lin, J. Alloys Comp., 548, 105 (2013); doi:10.1016/j.jallcom.2012.09.018.
G.C. Che, R.P. Mertens, R. Van Overstraeten and L. Frisson, IEEE Trans. Electron. Dev., 31, 602 (1984); doi:10.1109/T-ED.1984.21575.
C. Ballif, D.M. Huljić, G. Willeke and A. Hessler-Wyser, Appl. Phys. Lett., 82, 1878 (2003); doi:10.1063/1.1562338.
T. Nakajima, A. Kawakami and A. Tada, Int. J. Hybrid Microelectron., 6, 580 (1983).
M.M. Hilali, B. To, A. Rohatgi and B. To, Proceedings of the 14th Workshop on Crystalline Silicon Solar Cells and Modules, Winter Park, CO, USA, August 2004.
M.M. Hilali, S. Sridharan, C. Khadilkar, A. Shaikh, A. Rohatgi and S. Kim, J. Electron. Mater., 35, 2041 (2006); doi:10.1007/s11664-006-0311-x.