Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Novozyme 435 Asymmetric Hydrolysis of Enol Ester with Series Acid Moiety
Asian Journal of Chemistry,
Vol. 26 No. 2 (2014): Vol 26 Issue 2
Abstract
(R)-2-pentylcyclopentanone can be synthesized by the asymmetric hydrolysis of enol esters, catalyzed by immobilized candida antarctica (novozyme 435) lipase. Different acid moieties influence the stereoselectivity of lipase. Enol esters can be prepared from anhydrides and 2-pentylcyclopentanone. When introducing optical (S)-(+)-2-methyl-butyric acid, the hydrolysis of optical enol ester showed great enhancement of the specific rotation compared to the racemic enol ester, the specific rotation of product raise from [a]25D-10° (c 0.1, CH3OH) to [a]25D-72° (c 0.1, CH3OH). However, when bringing chiral acid moity, the specific rotation still can not catch up with the value compared to the isobutyric moiety. The specific rotation of (R)-2-pentylcyclopentanone is [a]25D-102.20° (c 0.1, CH3OH), the optimum temperature and pH were 30 °C and 6.5, respectively. Then 81.06 % ee of (R)-d-decalactone was prepared by the Baeyer-Villiger oxidation of (R)-2-pentylcyclopentanone.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.H. Boelens and L.J. Gernert, Perfum. Flavor., 18, 1 (1993).
- H. Guth, Helv. Chim. Acta, 79, 1559 (1996); doi:10.1002/hlca.19960790606.
- J.A. Bajgrowicz, I. Frank, G. Frater and M. Hennig, Helv. Chim. Acta, 81, 1349 (1998); doi:10.1002/hlca.19980810545.
- S.J. Stohs and H.G. Preuss, J. Funct. Foods, 4, 2 (2012); doi:10.1016/j.jff.2011.09.004.
- P. Kraft and A. Mannschreck, J. Chem. Educ., 87, 598 (2010); doi:10.1021/ed100128v.
- D. Lehmann, B. Maas and A. Mosandl, Z. Lebensm. Unters. Forsch., 201, 55 (1995); doi:10.1007/BF01193201.
- T. Ohta, T. Miyake, N. Seido, H. Kumobayashi and H. Takaya, J. Org. Chem., 60, 357 (1995); doi:10.1021/jo00107a014.
- T. Yamamoto, M. Ogura, A. Amano, K. Adachi, T. Hagiwara and T. Kanisawa, Tetrahedron Lett., 43, 9081 (2002); doi:10.1016/S0040-4039(02)02312-2.
- M. Treilhou, A. Fauve, J.R. Pougny, J.C. Prome and H. Veschambre, J. Org. Chem., 57, 3203 (1992); doi:10.1021/jo00037a044.
- E.N. Jacobsen and N.S. Finney, Chem. Biol., 1, 85 (1994); doi:10.1016/1074-5521(94)90045-0.
- P.H. van der Schaft, N. ter Burg, S. van den Bosch and A.M. Cohe, Appl. Microbiol. Biotechnol., 36, 712 (1992); doi:10.1007/BF00172180.
- P. D’Arrigo, C. Fuganti, G. Pedrocchi Fantoni and S. Servi, Tetrahedron, 54, 15017 (1998); doi:10.1016/S0040-4020(98)00941-7.
- G.T. Muys, B. Van Der Ven and A.P. DeJonge, Appl. Microbiol., 11, 389 (1963).
- K. Matsumoto, S. Tsutsumi, T. Ihori and H. Ohta, J. Am. Chem. Soc., 112, 9614 (1990); doi:10.1021/ja00182a020.
- T. Hirata, K. Shimoda and T. Kawano, Tetrahedron Asymm., 11, 1063 (2000); doi:10.1016/S0957-4166(00)00046-X.
- T. Sakai, A. Matsuda, Y. Tanaka, T. Korenaga and T. Ema, Tetrahedron Asymm., 15, 1929 (2004); doi:10.1016/j.tetasy.2004.05.008.
- T. Kashiwagi, K. Fujimori, S. Kozuka and S. Oae, Tetrahedron, 26, 3647 (1970); doi:10.1016/S0040-4020(01)92942-4.
- S.L. Schreiber and W.F. Liew, Tetrahedron Lett., 24, 2363 (1983); doi:10.1016/S0040-4039(00)81926-7.
- T. Yakura, T. Kitano, M. Ikeda and J. Uenishi, Tetrahedron Lett., 43, 6925 (2002); doi:10.1016/S0040-4039(02)01629-5.
- J.-M. Paul and P. Busca, Process for the Manufacture of Isobutyric Anhydride, US Patent 7049467 (2006).
- T. Ohta, T. Miyake, N. Seido, H. Kumobayashi, S. Akutagawa and H. Takaya, Tetrahedron Lett., 33, 635 (1992); doi:10.1016/S0040-4039(00)92330-X.
- J. Uppenberg, N. Oehrner, M. Norin, K. Hult, G.J. Kleywegt, S. Patkar, V. Waagen, T. Anthonsen and T.A. Jones, Biochem., 34, 16838 (1995); doi:10.1021/bi00051a035.
- D.M. Blow and T.A. Steitz, Annu. Rev. Biochem., 39, 63 (1970); doi:10.1146/annurev.bi.39.070170.000431.
- G.D. Yadav and P.S. Lathi, J. Mol. Catal. B, Enzym., 27, 113 (2004); doi:10.1016/j.molcatb.2003.10.004.
- S.N. Ahmed, R.J. Kazlauskas, A.H. Morinville, P. Grochulski, J.D. Schrag and M. Cygler, Biocatal. Biotransform., 9, 209 (1994); doi:10.3109/10242429408992121.
References
M.H. Boelens and L.J. Gernert, Perfum. Flavor., 18, 1 (1993).
H. Guth, Helv. Chim. Acta, 79, 1559 (1996); doi:10.1002/hlca.19960790606.
J.A. Bajgrowicz, I. Frank, G. Frater and M. Hennig, Helv. Chim. Acta, 81, 1349 (1998); doi:10.1002/hlca.19980810545.
S.J. Stohs and H.G. Preuss, J. Funct. Foods, 4, 2 (2012); doi:10.1016/j.jff.2011.09.004.
P. Kraft and A. Mannschreck, J. Chem. Educ., 87, 598 (2010); doi:10.1021/ed100128v.
D. Lehmann, B. Maas and A. Mosandl, Z. Lebensm. Unters. Forsch., 201, 55 (1995); doi:10.1007/BF01193201.
T. Ohta, T. Miyake, N. Seido, H. Kumobayashi and H. Takaya, J. Org. Chem., 60, 357 (1995); doi:10.1021/jo00107a014.
T. Yamamoto, M. Ogura, A. Amano, K. Adachi, T. Hagiwara and T. Kanisawa, Tetrahedron Lett., 43, 9081 (2002); doi:10.1016/S0040-4039(02)02312-2.
M. Treilhou, A. Fauve, J.R. Pougny, J.C. Prome and H. Veschambre, J. Org. Chem., 57, 3203 (1992); doi:10.1021/jo00037a044.
E.N. Jacobsen and N.S. Finney, Chem. Biol., 1, 85 (1994); doi:10.1016/1074-5521(94)90045-0.
P.H. van der Schaft, N. ter Burg, S. van den Bosch and A.M. Cohe, Appl. Microbiol. Biotechnol., 36, 712 (1992); doi:10.1007/BF00172180.
P. D’Arrigo, C. Fuganti, G. Pedrocchi Fantoni and S. Servi, Tetrahedron, 54, 15017 (1998); doi:10.1016/S0040-4020(98)00941-7.
G.T. Muys, B. Van Der Ven and A.P. DeJonge, Appl. Microbiol., 11, 389 (1963).
K. Matsumoto, S. Tsutsumi, T. Ihori and H. Ohta, J. Am. Chem. Soc., 112, 9614 (1990); doi:10.1021/ja00182a020.
T. Hirata, K. Shimoda and T. Kawano, Tetrahedron Asymm., 11, 1063 (2000); doi:10.1016/S0957-4166(00)00046-X.
T. Sakai, A. Matsuda, Y. Tanaka, T. Korenaga and T. Ema, Tetrahedron Asymm., 15, 1929 (2004); doi:10.1016/j.tetasy.2004.05.008.
T. Kashiwagi, K. Fujimori, S. Kozuka and S. Oae, Tetrahedron, 26, 3647 (1970); doi:10.1016/S0040-4020(01)92942-4.
S.L. Schreiber and W.F. Liew, Tetrahedron Lett., 24, 2363 (1983); doi:10.1016/S0040-4039(00)81926-7.
T. Yakura, T. Kitano, M. Ikeda and J. Uenishi, Tetrahedron Lett., 43, 6925 (2002); doi:10.1016/S0040-4039(02)01629-5.
J.-M. Paul and P. Busca, Process for the Manufacture of Isobutyric Anhydride, US Patent 7049467 (2006).
T. Ohta, T. Miyake, N. Seido, H. Kumobayashi, S. Akutagawa and H. Takaya, Tetrahedron Lett., 33, 635 (1992); doi:10.1016/S0040-4039(00)92330-X.
J. Uppenberg, N. Oehrner, M. Norin, K. Hult, G.J. Kleywegt, S. Patkar, V. Waagen, T. Anthonsen and T.A. Jones, Biochem., 34, 16838 (1995); doi:10.1021/bi00051a035.
D.M. Blow and T.A. Steitz, Annu. Rev. Biochem., 39, 63 (1970); doi:10.1146/annurev.bi.39.070170.000431.
G.D. Yadav and P.S. Lathi, J. Mol. Catal. B, Enzym., 27, 113 (2004); doi:10.1016/j.molcatb.2003.10.004.
S.N. Ahmed, R.J. Kazlauskas, A.H. Morinville, P. Grochulski, J.D. Schrag and M. Cygler, Biocatal. Biotransform., 9, 209 (1994); doi:10.3109/10242429408992121.