Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Reduced Graphene Oxide-Resorcinol Nanocomposite: A Chemosensor for the Detection of Cerium Ions
Corresponding Author(s) : Vidhya Bhojan
Asian Journal of Chemistry,
Vol. 33 No. 10 (2021): Vol 33 Issue 10, 2021
Abstract
A hybrid material reduced graphene oxide based organic nanocomposite was synthesized from graphite by modified Hummers method, which is further chemically reduced to form reduced graphene oxide (rGO) and with resorcinol through a solvothermal process a reduced graphene oxide-resorcinol (rGO-R) nanocomposite was obtained. The synthesized materials surface morphology and structural compositions were studied through X-ray diffraction (XRD) and scanning electron microscope (SEM) and their optical properties were studied through UV-visible spectroscopy and photoluminescence. The material was further used as a fluorescent chemosensor to detect cerium ion under aqueous conditions. The rGO-R composite’s sensing abilities were studied by following parameters viz. pH, reversibility, time and the interference of other probable competing ions. The sensing follows both the photo-induced electron transfer and intramolecular charge transfer processes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.R. Awual, M.M. Hasan, A. Shahat, M. Naushad, H. Shiwaku and T. Yaita, Chem. Eng. J., 265, 210 (2015); https://doi.org/10.1016/j.cej.2014.12.052
- M.R. Awual, T. Kobayashi, H. Shiwaku, Y. Miyazaki, R. Motokawa, S. Suzuki, Y. Okamoto and T. Yaita, Chem. Eng. J., 225, 558 (2013); https://doi.org/10.1016/j.cej.2013.04.015
- M.R. Awual, T. Kobayashi, Y. Miyazaki, R. Motokawa, H. Shiwaku, S. Suzuki, Y. Okamoto and T. Yaita, J. Hazard. Mater., 252-253, 313 (2013); https://doi.org/10.1016/j.jhazmat.2013.03.020
- M.R. Awual, N.H. Alharthi, Y. Okamoto, M.R. Karim, M.E. Halim, M.M. Hasan, M.M. Rahman, M.M. Islam, M.A. Khaleque and M.C. Sheikh, Chem. Eng. J., 320, 427 (2017); https://doi.org/10.1016/j.cej.2017.03.075
- S. Sarkar, C.M. Chatti, V.N.K.B. Adusumalli and V. Mahalingam, ACS Appl. Mater. Interfaces, 7, 25072 (2015); https://doi.org/10.1021/acsami.5b06730
- H.A. Zamani, N.R. Ganjali and M. Adib, Sens. Actuators B Chem., 120, 545 (2007); https://doi.org/10.1016/j.snb.2006.03.013
- H. Fashui, W. Ling, M. Xiangxuan, W. Zheng and Z. Guiwen, Biol. Trace Elem. Res., 89, 263 (2002); https://doi.org/10.1385/BTER:89:3:263
- Y. Kuang, X. He, Z. Zhang, Y. Li, H. Zhang, Y. Ma, Z. Wu and Z. Chai, J. Nanosci. Nanotechnol., 11, 4103 (2011); https://doi.org/10.1166/jnn.2011.3858
- L. Zhou, S. Tang, L. Yang, X. Huang, L. Zou, Y. Huang, S. Dong, X. Zhou and X. Yang, J. Trace Elem. Med. Biol., 52, 126 (2019); https://doi.org/10.1016/j.jtemb.2018.12.006
- M.S. Li and P.Y. Hou, Acta Mater., 55, 443 (2007); https://doi.org/10.1016/j.actamat.2006.07.047
- N.R. Panda, B.S. Acharya, T.B. Singh and R.K. Gartia, J. Lumin., 136, 369 (2013); https://doi.org/10.1016/j.jlumin.2012.12.002
- V. Höllriegl, M. González-Estecha, E.M. Trasobares, A. Giussani, U. Oeh, M.A. Herraiz and B. Michalke, J. Trace Elem. Med. Biol., 24, 193 (2010); https://doi.org/10.1016/j.jtemb.2010.03.001
- J.T. Dahle and Y. Arai, Int. J. Environ. Res. Public Health, 12, 1253 (2015); https://doi.org/10.3390/ijerph120201253
- D. Li, S. Huang, W. Wang and A. Peng, Chemosphere, 44, 663 (2001); https://doi.org/10.1016/S0045-6535(00)00357-X
- J. Emsley, Nature’s Building Blocks: Everything You Need to Know about the Elements, Oxford University Press (2011).
- B.M. Angel, P. Vallotton and S.C. Apte, Aquat. Toxicol., 168, 90 (2015); https://doi.org/10.1016/j.aquatox.2015.09.015
- V. Galstyan, E. Comini, A. Ponzoni, V. Sberveglieri and G. Sberveglieri, Chemosensors, 4, 6 (2016); https://doi.org/10.3390/chemosensors4020006
- E. Comini, G. Faglia and G. Sberveglieri, Solid State Gas Sensing, Springer US, Boston, MA (2009).
- F. Salehnia, F. Faridbod, A.S. Dezfuli, M.R. Ganjali and P. Norouzi, J. Fluoresc., 27, 331 (2017); https://doi.org/10.1007/s10895-016-1962-5
- D.J. Dmonte, A. Pandiyarajan, N. Bhuvanesh, R. Nandhakumar and S. Suresh, Mater. Lett., 227, 154 (2018); https://doi.org/10.1016/j.matlet.2018.05.051
- M. Liu, Z. Xu, Y. Song, H. Li and C. Xian, J. Lumin., 198, 337 (2018); https://doi.org/10.1016/j.jlumin.2018.02.047
- X. Li, Y. Zheng, Y. Tang, Q. Chen, J. Gao, Q. Luo and Q. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 206, 240 (2019); https://doi.org/10.1016/j.saa.2018.08.021
- Y. Wang, X. Pan, Z. Peng, Y. Zhang, P. Liu, Z. Cai, B. Tong, J. Shi and Y. Dong, Sens. Actuators B Chem., 267, 351 (2018); https://doi.org/10.1016/j.snb.2018.04.056
- M. Panchal, A. Kongor, M. Athar, V. Mehta, P.C. Jha and V.K. Jain, New J. Chem., 42, 311 (2018); https://doi.org/10.1039/C7NJ02828H
- F. Nemati and R. Zare-Dorabei, Talanta, 200, 249 (2019); https://doi.org/10.1016/j.talanta.2019.03.059
- X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science, 319, 1229 (2008); https://doi.org/10.1126/science.1150878
- C. Di, D. Wei, G. Yu, Y. Liu, Y. Guo and D. Zhu, Adv. Mater., 20, 3289 (2008); https://doi.org/10.1002/adma.200800150
- S. Pang, H.N. Tsao, X. Feng and K. Mullen, Adv. Mater., 21, 3488 (2009); https://doi.org/10.1002/adma.200803812
- Z.-S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu and H.- M. Cheng, Adv. Mater., 21, 1756 (2009); https://doi.org/10.1002/adma.200802560
- E.J. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura and I. Honma, Nano Lett., 9, 2255 (2009); https://doi.org/10.1021/nl900397t
- Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang and Y. Chen, Adv. Mater., 21, 1275 (2009); https://doi.org/10.1002/adma.200801617
- S. Chuah, Z. Pan, J.G. Sanjayan, C.M. Wang and W.H. Duan, Constr. Build. Mater., 73, 113 (2014); https://doi.org/10.1016/j.conbuildmat.2014.09.040
- L.C. Tang, Y.J. Wan, D. Yan, Y.B. Pei, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang and G.Q. Lai, Carbon, 60, 16 (2013); https://doi.org/10.1016/j.carbon.2013.03.050
- Y. Chen, J. Qian, X. Liu, Q. Zhuang and Z. Han, New J. Chem., 37, 2500 (2013); https://doi.org/10.1039/c3nj00355h
- J. Shang, L. Ma, J. Li, W. Ai, T. Yu and G.G. Gurzadyan, Sci. Rep., 2, 792 (2012); https://doi.org/10.1038/srep00792
- L. Shahriary and A. Athawale, Int. J. Renew. Energy Environ. Eng., 2, 58 (2014).
- L.G. Guex, B. Sacchi, K.F. Peuvot, R.L. Andersson, A.M. Pourrahimi, V. Ström, S. Farris and R.T. Olsson, Nanoscale, 9, 9562 (2017); https://doi.org/10.1039/C7NR02943H
- R. Muszynski and B. Seger, J. Phys. Chem. C, 112, 5263 (2008); https://doi.org/10.1021/jp800977b
- J. Balapanuru, J.-X. Yang, S. Xiao, Q. Bao, M. Jahan, L. Polavarapu, J. Wei, Q.H. Xu and K.P. Loh, Angew. Chem. Int. Ed., 49, 6549 (2010); https://doi.org/10.1002/anie.201001004
- S. Santhoshkumar, K. Velmurugan, J. Prabhu, G. Radhakrishnan and R. Nandhakumar, Inorg. Chim. Acta, 439, 1 (2016); https://doi.org/10.1016/j.ica.2015.09.030
- J. Prabhu, K. Velmurugan, A. Raman, N. Duraipandy, S. Easwaramoorthi M.S. Kiran and R. Nandhakumar, Sens. Actuators B Chem., 238, 306 (2017); https://doi.org/10.1016/j.snb.2016.07.018
- K. Velmurugan, S. Mathankumar, S. Santoshkumar, S. Amudha and R. Nandhakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 139, 119 (2015); https://doi.org/10.1016/j.saa.2014.11.103
- J. Prabhu, K. Velmurugan and R. Nandhakumar, Anal. Chem., 70, 943 (2015); https://doi.org/10.1134/S1061934815080134
- K. Velmurugan and R. Nandhakumar, J. Lumin., 162, 8 (2015); https://doi.org/10.1016/j.jlumin.2015.01.039
- J. Prabhu, K. Velmurugan and R. Nandhakumar, J. Lumin., 145, 733 (2014); https://doi.org/10.1016/j.jlumin.2013.08.056
References
M.R. Awual, M.M. Hasan, A. Shahat, M. Naushad, H. Shiwaku and T. Yaita, Chem. Eng. J., 265, 210 (2015); https://doi.org/10.1016/j.cej.2014.12.052
M.R. Awual, T. Kobayashi, H. Shiwaku, Y. Miyazaki, R. Motokawa, S. Suzuki, Y. Okamoto and T. Yaita, Chem. Eng. J., 225, 558 (2013); https://doi.org/10.1016/j.cej.2013.04.015
M.R. Awual, T. Kobayashi, Y. Miyazaki, R. Motokawa, H. Shiwaku, S. Suzuki, Y. Okamoto and T. Yaita, J. Hazard. Mater., 252-253, 313 (2013); https://doi.org/10.1016/j.jhazmat.2013.03.020
M.R. Awual, N.H. Alharthi, Y. Okamoto, M.R. Karim, M.E. Halim, M.M. Hasan, M.M. Rahman, M.M. Islam, M.A. Khaleque and M.C. Sheikh, Chem. Eng. J., 320, 427 (2017); https://doi.org/10.1016/j.cej.2017.03.075
S. Sarkar, C.M. Chatti, V.N.K.B. Adusumalli and V. Mahalingam, ACS Appl. Mater. Interfaces, 7, 25072 (2015); https://doi.org/10.1021/acsami.5b06730
H.A. Zamani, N.R. Ganjali and M. Adib, Sens. Actuators B Chem., 120, 545 (2007); https://doi.org/10.1016/j.snb.2006.03.013
H. Fashui, W. Ling, M. Xiangxuan, W. Zheng and Z. Guiwen, Biol. Trace Elem. Res., 89, 263 (2002); https://doi.org/10.1385/BTER:89:3:263
Y. Kuang, X. He, Z. Zhang, Y. Li, H. Zhang, Y. Ma, Z. Wu and Z. Chai, J. Nanosci. Nanotechnol., 11, 4103 (2011); https://doi.org/10.1166/jnn.2011.3858
L. Zhou, S. Tang, L. Yang, X. Huang, L. Zou, Y. Huang, S. Dong, X. Zhou and X. Yang, J. Trace Elem. Med. Biol., 52, 126 (2019); https://doi.org/10.1016/j.jtemb.2018.12.006
M.S. Li and P.Y. Hou, Acta Mater., 55, 443 (2007); https://doi.org/10.1016/j.actamat.2006.07.047
N.R. Panda, B.S. Acharya, T.B. Singh and R.K. Gartia, J. Lumin., 136, 369 (2013); https://doi.org/10.1016/j.jlumin.2012.12.002
V. Höllriegl, M. González-Estecha, E.M. Trasobares, A. Giussani, U. Oeh, M.A. Herraiz and B. Michalke, J. Trace Elem. Med. Biol., 24, 193 (2010); https://doi.org/10.1016/j.jtemb.2010.03.001
J.T. Dahle and Y. Arai, Int. J. Environ. Res. Public Health, 12, 1253 (2015); https://doi.org/10.3390/ijerph120201253
D. Li, S. Huang, W. Wang and A. Peng, Chemosphere, 44, 663 (2001); https://doi.org/10.1016/S0045-6535(00)00357-X
J. Emsley, Nature’s Building Blocks: Everything You Need to Know about the Elements, Oxford University Press (2011).
B.M. Angel, P. Vallotton and S.C. Apte, Aquat. Toxicol., 168, 90 (2015); https://doi.org/10.1016/j.aquatox.2015.09.015
V. Galstyan, E. Comini, A. Ponzoni, V. Sberveglieri and G. Sberveglieri, Chemosensors, 4, 6 (2016); https://doi.org/10.3390/chemosensors4020006
E. Comini, G. Faglia and G. Sberveglieri, Solid State Gas Sensing, Springer US, Boston, MA (2009).
F. Salehnia, F. Faridbod, A.S. Dezfuli, M.R. Ganjali and P. Norouzi, J. Fluoresc., 27, 331 (2017); https://doi.org/10.1007/s10895-016-1962-5
D.J. Dmonte, A. Pandiyarajan, N. Bhuvanesh, R. Nandhakumar and S. Suresh, Mater. Lett., 227, 154 (2018); https://doi.org/10.1016/j.matlet.2018.05.051
M. Liu, Z. Xu, Y. Song, H. Li and C. Xian, J. Lumin., 198, 337 (2018); https://doi.org/10.1016/j.jlumin.2018.02.047
X. Li, Y. Zheng, Y. Tang, Q. Chen, J. Gao, Q. Luo and Q. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 206, 240 (2019); https://doi.org/10.1016/j.saa.2018.08.021
Y. Wang, X. Pan, Z. Peng, Y. Zhang, P. Liu, Z. Cai, B. Tong, J. Shi and Y. Dong, Sens. Actuators B Chem., 267, 351 (2018); https://doi.org/10.1016/j.snb.2018.04.056
M. Panchal, A. Kongor, M. Athar, V. Mehta, P.C. Jha and V.K. Jain, New J. Chem., 42, 311 (2018); https://doi.org/10.1039/C7NJ02828H
F. Nemati and R. Zare-Dorabei, Talanta, 200, 249 (2019); https://doi.org/10.1016/j.talanta.2019.03.059
X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science, 319, 1229 (2008); https://doi.org/10.1126/science.1150878
C. Di, D. Wei, G. Yu, Y. Liu, Y. Guo and D. Zhu, Adv. Mater., 20, 3289 (2008); https://doi.org/10.1002/adma.200800150
S. Pang, H.N. Tsao, X. Feng and K. Mullen, Adv. Mater., 21, 3488 (2009); https://doi.org/10.1002/adma.200803812
Z.-S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu and H.- M. Cheng, Adv. Mater., 21, 1756 (2009); https://doi.org/10.1002/adma.200802560
E.J. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura and I. Honma, Nano Lett., 9, 2255 (2009); https://doi.org/10.1021/nl900397t
Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang and Y. Chen, Adv. Mater., 21, 1275 (2009); https://doi.org/10.1002/adma.200801617
S. Chuah, Z. Pan, J.G. Sanjayan, C.M. Wang and W.H. Duan, Constr. Build. Mater., 73, 113 (2014); https://doi.org/10.1016/j.conbuildmat.2014.09.040
L.C. Tang, Y.J. Wan, D. Yan, Y.B. Pei, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang and G.Q. Lai, Carbon, 60, 16 (2013); https://doi.org/10.1016/j.carbon.2013.03.050
Y. Chen, J. Qian, X. Liu, Q. Zhuang and Z. Han, New J. Chem., 37, 2500 (2013); https://doi.org/10.1039/c3nj00355h
J. Shang, L. Ma, J. Li, W. Ai, T. Yu and G.G. Gurzadyan, Sci. Rep., 2, 792 (2012); https://doi.org/10.1038/srep00792
L. Shahriary and A. Athawale, Int. J. Renew. Energy Environ. Eng., 2, 58 (2014).
L.G. Guex, B. Sacchi, K.F. Peuvot, R.L. Andersson, A.M. Pourrahimi, V. Ström, S. Farris and R.T. Olsson, Nanoscale, 9, 9562 (2017); https://doi.org/10.1039/C7NR02943H
R. Muszynski and B. Seger, J. Phys. Chem. C, 112, 5263 (2008); https://doi.org/10.1021/jp800977b
J. Balapanuru, J.-X. Yang, S. Xiao, Q. Bao, M. Jahan, L. Polavarapu, J. Wei, Q.H. Xu and K.P. Loh, Angew. Chem. Int. Ed., 49, 6549 (2010); https://doi.org/10.1002/anie.201001004
S. Santhoshkumar, K. Velmurugan, J. Prabhu, G. Radhakrishnan and R. Nandhakumar, Inorg. Chim. Acta, 439, 1 (2016); https://doi.org/10.1016/j.ica.2015.09.030
J. Prabhu, K. Velmurugan, A. Raman, N. Duraipandy, S. Easwaramoorthi M.S. Kiran and R. Nandhakumar, Sens. Actuators B Chem., 238, 306 (2017); https://doi.org/10.1016/j.snb.2016.07.018
K. Velmurugan, S. Mathankumar, S. Santoshkumar, S. Amudha and R. Nandhakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 139, 119 (2015); https://doi.org/10.1016/j.saa.2014.11.103
J. Prabhu, K. Velmurugan and R. Nandhakumar, Anal. Chem., 70, 943 (2015); https://doi.org/10.1134/S1061934815080134
K. Velmurugan and R. Nandhakumar, J. Lumin., 162, 8 (2015); https://doi.org/10.1016/j.jlumin.2015.01.039
J. Prabhu, K. Velmurugan and R. Nandhakumar, J. Lumin., 145, 733 (2014); https://doi.org/10.1016/j.jlumin.2013.08.056