Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Densities and Refractive Indices for N-Arylhydroxamic Acids in Dimethylsulphoxide at Various Temperatures
Corresponding Author(s) : V. Verma
Asian Journal of Chemistry,
Vol. 25 No. 6 (2013): Vol 25 Issue 6
Abstract
Refractive index deviations (nE), excess volumes (VE) and molar refraction (RM) of two isomeric hydroxamic acids, N-phenyl-2-methylbenzohydroxamic acid, N-phenyl-2-nitrobenzohydroxamic acid and N-phenyl-3-nitrobenzohydroxamic acid have been calculated from experimental data of refractive indices (n) and densities (r) in dimethyl sulphoxide at various temperatures (298.15, 303.15, 308.15 and 313.15) K. Results obtained have been discussed in terms of intermolecular ineteractions and a comprehensive discussion has been provided. The apparent molar volume at infinite dilution and the slope of Masson's equation are computed, to interpret the solute-solvent interaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.C.P Hwa and W.T. Ziegler, J. Phys. Chem., 70, 2572 (1966).
- H.K. Kehl, Chemistry and Biology of Hydroxamic Acids, Karger, Basel, (1982).
- R.D. Wagh, H.S. Mahajan and S.G. Kaskhedikar, Asian J. Chem., 19, 4188 (2007).
- S. Hanessian and S. Johnstone, J. Org. Chem., 64, 5896 (1999).
- M. Whittaker, C.D. Floyd, P. Brown and A.J.H. Gearing, Chem. Rev., 99, 2735 (1999).
- T. Kolasa, A.O. Stewart and C.D.W. Brooks, Tetrahedron:Asym., 7, 729 (1996).
- F.A.J. Kerdesky, S.P. Schmidt, J.H. Holms, R.D. Dyer, G.W. Carter and D.W. Brooks, J. Med. Chem., 30, 1177 (1987)
- R.K. Dewan, S.P. Gupta and S.K. Mehta, J. Soln. Chem., 18, 13 (1989).
- A. Galmes, J. Besalduch, J. Bergay, A. Novo, M. Morey, J.M. Gureria and M.A. Duran, Transfusion, 39, 70 (1999).
- T.T. Anchrodoguy. C.A. Cecchini and J.H. Crowe, Cryobiology, 28, 467 (1991).
- T.J. Reid, G. Esteban, M. Clear and M. Gorogias, Transfusion, 39, 616 (1999).
- R. Pande and S.G. Tandon, J. Chem. Eng. Data, 24, 72 (1979).
- J.A. Riddick, W.B. Bunger and T. Sakano, Organic Solvent, Techniques of Chemistry, Wiley Interscience, New York, Vol I, edn. 4 (1986).
- P.G. Sears, W.D. Sieqfried and D.E. Sunds, J. Chem. Eng. Data, 9, 261 (1964).
- Bhanupriya, R.P. Rajwade and R. Pande, J. Eng. Chem. Data, 53, 1458 (2008).
- M.A. Saleh, S. Akhtar, M.S. Ahmed and M.H. Uddin, Phys. Chem. Liq., 40, 621 (2002).
- J.F. Casteel and P.G. Sears, J. Chem. Eng. Data, 19, 196 (1974).
- S.A. Markarian and A.M. Erzyan, J. Chem. Eng. Data, 52, 1704 (2007).
- I. Koltz and R.M. Rosenberg, Chemical Thermodynamics, Basic Theory and Methods, W.A. Benzanin: CA, edn 3 (1972).
- D.O. Masson, Philos. Mag., 8, 218 (1929).
- P. Brocos, A. Pineiro, R. Bravo and A. Amigo, Phys. Chem. Chem. Phys., 5, 550 (2003).
- A. Ali, S. Sabir, A.K. Nain, S. Hyder, S. Ahmad and R. Patel, J. Indian Chem. Soc., 83, 581 (2006).
- H. Lorentz, Ann. Phys., 9, 64; L.V. Lorenz, Ann. Phys., 11, 70 (1980).
- Y.Y. Fialkov, Russ. J. Phys. Chem., 41, 398 (1967).
References
S.C.P Hwa and W.T. Ziegler, J. Phys. Chem., 70, 2572 (1966).
H.K. Kehl, Chemistry and Biology of Hydroxamic Acids, Karger, Basel, (1982).
R.D. Wagh, H.S. Mahajan and S.G. Kaskhedikar, Asian J. Chem., 19, 4188 (2007).
S. Hanessian and S. Johnstone, J. Org. Chem., 64, 5896 (1999).
M. Whittaker, C.D. Floyd, P. Brown and A.J.H. Gearing, Chem. Rev., 99, 2735 (1999).
T. Kolasa, A.O. Stewart and C.D.W. Brooks, Tetrahedron:Asym., 7, 729 (1996).
F.A.J. Kerdesky, S.P. Schmidt, J.H. Holms, R.D. Dyer, G.W. Carter and D.W. Brooks, J. Med. Chem., 30, 1177 (1987)
R.K. Dewan, S.P. Gupta and S.K. Mehta, J. Soln. Chem., 18, 13 (1989).
A. Galmes, J. Besalduch, J. Bergay, A. Novo, M. Morey, J.M. Gureria and M.A. Duran, Transfusion, 39, 70 (1999).
T.T. Anchrodoguy. C.A. Cecchini and J.H. Crowe, Cryobiology, 28, 467 (1991).
T.J. Reid, G. Esteban, M. Clear and M. Gorogias, Transfusion, 39, 616 (1999).
R. Pande and S.G. Tandon, J. Chem. Eng. Data, 24, 72 (1979).
J.A. Riddick, W.B. Bunger and T. Sakano, Organic Solvent, Techniques of Chemistry, Wiley Interscience, New York, Vol I, edn. 4 (1986).
P.G. Sears, W.D. Sieqfried and D.E. Sunds, J. Chem. Eng. Data, 9, 261 (1964).
Bhanupriya, R.P. Rajwade and R. Pande, J. Eng. Chem. Data, 53, 1458 (2008).
M.A. Saleh, S. Akhtar, M.S. Ahmed and M.H. Uddin, Phys. Chem. Liq., 40, 621 (2002).
J.F. Casteel and P.G. Sears, J. Chem. Eng. Data, 19, 196 (1974).
S.A. Markarian and A.M. Erzyan, J. Chem. Eng. Data, 52, 1704 (2007).
I. Koltz and R.M. Rosenberg, Chemical Thermodynamics, Basic Theory and Methods, W.A. Benzanin: CA, edn 3 (1972).
D.O. Masson, Philos. Mag., 8, 218 (1929).
P. Brocos, A. Pineiro, R. Bravo and A. Amigo, Phys. Chem. Chem. Phys., 5, 550 (2003).
A. Ali, S. Sabir, A.K. Nain, S. Hyder, S. Ahmad and R. Patel, J. Indian Chem. Soc., 83, 581 (2006).
H. Lorentz, Ann. Phys., 9, 64; L.V. Lorenz, Ann. Phys., 11, 70 (1980).
Y.Y. Fialkov, Russ. J. Phys. Chem., 41, 398 (1967).