Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Mixed Solvothermal Synthesis of Sb2Se3 Whiskers Assembled by Nanobelts
Corresponding Author(s) : Hanmei Hu
Asian Journal of Chemistry,
Vol. 25 No. 10 (2013): Vol 25 Issue 10
Abstract
By adopting mixed solvothermal synthesis technology, nanobelt-based Sb2Se3 whiskers were fabricated in the mixed solvent of C2H5OH and N2H4·H2O with the volume ratio of 2:1 at 160-180 ºC for 12 h, using SbCl3 and SeO2 as starting reactant. The products are characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The volume ratio of ethanol and hydrazine hydrate influences the morphology of Sb2Se3 products. The diameters of Sb2Se3 whiskers range from 0.4 to 1.2 μm and length is up to 30 μm. The whisker is assembled by multi-layered Sb2Se3 nanobelts and the growth mechanism is simply studied.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Kim, Mater. Lett., 43, 221 (2000).
- J. Black, E.M. Conwell, L. Seigle and C.W. Spencer, J. Phys. Chem. Solids, 2, 240 (1957).
- H.T. El-Shair, A.M. Ibrahim, E.A. El-Wahabb, M.A. Afify and F.A. ElSalam, Vacuum, 42, 911 (1991).
- F.D. Rosi, B. Abeles and R.V. Jensen, J. Phys. Chem. Solids, 10, 191 (1959).
- Q. Xie, Z.P. Liu, M.W. Shao, L.F. Kong, W.C. Yu and Y.T. Qian, J. Cryst. Growth, 252, 570 (2003).
- X.W. Zheng, Y. Xie, L.Y. Zhu, X.C. Jiang, Y.B. Jia, W.H. Song and Y.P. Sun, Inorg. Chem., 41, 455 (2002).
- Y.X. Zhang, G.H. Li, B. Zhang and L.D. Zhang, Mater. Lett., 58, 2279 (2004).
- C. Zhao, X.B. Cao and X.M. Lan, Mater. Lett., 61, 5083 (2007).
- L. Guo, G.B. Ji, X.F. Chang, M.B. Zheng, Y. Shi and Y.D. Zheng, Nanotechnology, 21, 035606 (2010).
- H.W. Chang, B.J. Sarkar and C.W. Liu, Cryst. Growth Des., 12, 2691 (2007).
- N. Maiti, S.H. Im, Y.H. Lee, C. Kim and S. Seok, Cryst. Eng. Comm., 13, 3767 (2011).
- R.C. Jin, G. Chen, J. Pei, J.X. Sun and Y. Wang, Nanoscale, 3, 3893 (2011).
References
I. Kim, Mater. Lett., 43, 221 (2000).
J. Black, E.M. Conwell, L. Seigle and C.W. Spencer, J. Phys. Chem. Solids, 2, 240 (1957).
H.T. El-Shair, A.M. Ibrahim, E.A. El-Wahabb, M.A. Afify and F.A. ElSalam, Vacuum, 42, 911 (1991).
F.D. Rosi, B. Abeles and R.V. Jensen, J. Phys. Chem. Solids, 10, 191 (1959).
Q. Xie, Z.P. Liu, M.W. Shao, L.F. Kong, W.C. Yu and Y.T. Qian, J. Cryst. Growth, 252, 570 (2003).
X.W. Zheng, Y. Xie, L.Y. Zhu, X.C. Jiang, Y.B. Jia, W.H. Song and Y.P. Sun, Inorg. Chem., 41, 455 (2002).
Y.X. Zhang, G.H. Li, B. Zhang and L.D. Zhang, Mater. Lett., 58, 2279 (2004).
C. Zhao, X.B. Cao and X.M. Lan, Mater. Lett., 61, 5083 (2007).
L. Guo, G.B. Ji, X.F. Chang, M.B. Zheng, Y. Shi and Y.D. Zheng, Nanotechnology, 21, 035606 (2010).
H.W. Chang, B.J. Sarkar and C.W. Liu, Cryst. Growth Des., 12, 2691 (2007).
N. Maiti, S.H. Im, Y.H. Lee, C. Kim and S. Seok, Cryst. Eng. Comm., 13, 3767 (2011).
R.C. Jin, G. Chen, J. Pei, J.X. Sun and Y. Wang, Nanoscale, 3, 3893 (2011).