Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cobalt(II) Chloride Complex of Propylene-1,3-diamine as CO2 Absorber
Corresponding Author(s) : Fangfang Jian
Asian Journal of Chemistry,
Vol. 32 No. 1 (2020): Vol 32 Issue 1
Abstract
A new CO2 absorber is reported in this paper. When CoCl3 is mixed with propylenediamine at room temperature and atmospheric ambient pressure, the extremely low concentration of CO2 in the air can be absorbed to form a stable metal complex [Co(PPD)2CO3]Cl·H2O (PPD = 1,3-propylenediamine). The CO2 capture capacity can reach 23.6 wt. %. Although Co is relatively expensive, the practical use of cobalt metal complexes produced still needs to be developed. This study provides an idea of capturing CO2 at low concentration under normal conditions. Through the structural characterization and performance study of complex [Co(PPD)2CO3]Cl·H2O, a new method for CO2 capture was explored. Thermogravimetric analysis data show that the compound [Co(PPD)2CO3]Cl·H2O has the ability to desorption CO2 and H2O at 160-220 ºC, and the ability to adsorb CO2 or regenerate CO2 is being explored. The electrochemical property of compound [Co(PPD)2CO3]Cl·H2O were also investigated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Ghahramaninezhad, B. Soleimani and M. Niknam Shahrak, New J. Chem., 42, 4639 (2018); https://doi.org/10.1039/C8NJ00274F.
- S. Iglauer, Int. J. Greenh. Gas Control, 77, 82 (2018); https://doi.org/10.1016/j.ijggc.2018.07.009.
- H. Chen, T.C. Tsai and C.S. Tan, Int. J. Greenh. Gas Control, 79, 127 (2018); https://doi.org/10.1016/j.ijggc.2018.10.002.
- M. Aresta, Coord. Chem. Rev., 334, 150 (2017); https://doi.org/10.1016/j.ccr.2016.06.004.
- A.W. Kleij, M. North and A. Urakawa, ChemSusChem, 10, 1036 (2017); https://doi.org/10.1002/cssc.201700218.
- M. Aresta, A. Dibenedetto and A. Angelini, Chem. Rev., 114, 1709 (2014); https://doi.org/10.1021/cr4002758.
- P. Gao, S. Dang, S. Li, X. Bu, Z. Liu, M. Qiu, C. Yang, H. Wang, L. Zhong, Y. Han, Q. Liu, W. Wei and Y. Sun, ACS Catal., 8, 571 (2018); https://doi.org/10.1021/acscatal.7b02649.
- J. de Riva, V. Ferro, C. Moya, M.A. Stadtherr, J.F. Brennecke and J. Palomar, Int. J. Greenh. Gas Control, 78, 94 (2018); https://doi.org/10.1016/j.ijggc.2018.07.016.
- I. Bauer and H.J. Knolker, Chem. Rev., 115, 3170 (2015); https://doi.org/10.1021/cr500425u.
- X. Liu, S. Zhang, Q.W. Song, X.F. Liu, R. Ma and L.N. He, Green Chem., 18, 2871 (2016); https://doi.org/10.1039/C5GC02761F.
- O.M. Yaghi, M. O’Keeffe, N.M. Ockwig, H.K. Chae, M. Eddaoudi and J. Kim, Nature, 423, 705 (2003); https://doi.org/10.1038/nature01650.
- S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem. Int. Ed., 43, 2334 (2004); https://doi.org/10.1002/anie.200300610.
- G. Ferey, C. Mellot-Draznieks, C. Serre and F. Millange, Acc. Chem. Res., 38, 217 (2005); https://doi.org/10.1021/ar040163i.
- S. Takamizawa, T. Akatsuka and T. Ueda, Angew. Chem. Int. Ed., 47, 1689 (2008); https://doi.org/10.1002/anie.200702950.
- D.N. Sears, R.E. Wasylishen and T. Ueda, J. Phys. Chem. B, 110, 11120 (2006); https://doi.org/10.1021/jp061655a.
- Y.D. Han, J. Zhang, N.N. Liu, Y. Wang and X. Zhang, Chin. J Struc. Chem., 34, 435 (2015).
- N. Ohta, A. Fuyuhiro and K. Yamanari, Chem. Commun., 46, 3535 (2010); https://doi.org/10.1039/B923824G.
- C.Y. Yue, X.W. Lei, Y.X. Ma, N. Sheng, Y.D. Yang, G.D. Liu and X.R. Zhai, Cryst. Growth Des., 14, 101 (2014); https://doi.org/10.1021/cg401208p.
- H.L. Zhu and X.M. Chen, Acta Crystallogr. C, 55, 2010 (1999); https://doi.org/10.1107/S0108270199010525.
- D. Eisenberg and W. Kauzmann, The Structure and Properties of Water; Oxford University Press: New York (1969).
References
M. Ghahramaninezhad, B. Soleimani and M. Niknam Shahrak, New J. Chem., 42, 4639 (2018); https://doi.org/10.1039/C8NJ00274F.
S. Iglauer, Int. J. Greenh. Gas Control, 77, 82 (2018); https://doi.org/10.1016/j.ijggc.2018.07.009.
H. Chen, T.C. Tsai and C.S. Tan, Int. J. Greenh. Gas Control, 79, 127 (2018); https://doi.org/10.1016/j.ijggc.2018.10.002.
M. Aresta, Coord. Chem. Rev., 334, 150 (2017); https://doi.org/10.1016/j.ccr.2016.06.004.
A.W. Kleij, M. North and A. Urakawa, ChemSusChem, 10, 1036 (2017); https://doi.org/10.1002/cssc.201700218.
M. Aresta, A. Dibenedetto and A. Angelini, Chem. Rev., 114, 1709 (2014); https://doi.org/10.1021/cr4002758.
P. Gao, S. Dang, S. Li, X. Bu, Z. Liu, M. Qiu, C. Yang, H. Wang, L. Zhong, Y. Han, Q. Liu, W. Wei and Y. Sun, ACS Catal., 8, 571 (2018); https://doi.org/10.1021/acscatal.7b02649.
J. de Riva, V. Ferro, C. Moya, M.A. Stadtherr, J.F. Brennecke and J. Palomar, Int. J. Greenh. Gas Control, 78, 94 (2018); https://doi.org/10.1016/j.ijggc.2018.07.016.
I. Bauer and H.J. Knolker, Chem. Rev., 115, 3170 (2015); https://doi.org/10.1021/cr500425u.
X. Liu, S. Zhang, Q.W. Song, X.F. Liu, R. Ma and L.N. He, Green Chem., 18, 2871 (2016); https://doi.org/10.1039/C5GC02761F.
O.M. Yaghi, M. O’Keeffe, N.M. Ockwig, H.K. Chae, M. Eddaoudi and J. Kim, Nature, 423, 705 (2003); https://doi.org/10.1038/nature01650.
S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem. Int. Ed., 43, 2334 (2004); https://doi.org/10.1002/anie.200300610.
G. Ferey, C. Mellot-Draznieks, C. Serre and F. Millange, Acc. Chem. Res., 38, 217 (2005); https://doi.org/10.1021/ar040163i.
S. Takamizawa, T. Akatsuka and T. Ueda, Angew. Chem. Int. Ed., 47, 1689 (2008); https://doi.org/10.1002/anie.200702950.
D.N. Sears, R.E. Wasylishen and T. Ueda, J. Phys. Chem. B, 110, 11120 (2006); https://doi.org/10.1021/jp061655a.
Y.D. Han, J. Zhang, N.N. Liu, Y. Wang and X. Zhang, Chin. J Struc. Chem., 34, 435 (2015).
N. Ohta, A. Fuyuhiro and K. Yamanari, Chem. Commun., 46, 3535 (2010); https://doi.org/10.1039/B923824G.
C.Y. Yue, X.W. Lei, Y.X. Ma, N. Sheng, Y.D. Yang, G.D. Liu and X.R. Zhai, Cryst. Growth Des., 14, 101 (2014); https://doi.org/10.1021/cg401208p.
H.L. Zhu and X.M. Chen, Acta Crystallogr. C, 55, 2010 (1999); https://doi.org/10.1107/S0108270199010525.
D. Eisenberg and W. Kauzmann, The Structure and Properties of Water; Oxford University Press: New York (1969).