Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Nd-Doped Fe3O4 Nanoparticles: Microwave Synthesis, Catalytic Properties in Selective Oxidation of Styrene
Corresponding Author(s) : V.T. Geetha
Asian Journal of Chemistry,
Vol. 33 No. 3 (2021): Vol 33 Issue 3
Abstract
Nanocrystalline powder of neodymium substituted iron oxides samples were synthesized through the microwave approach. The synthesized pristine Fe3O4 and Nd-doped Fe3O4 structural properties were analyzed by the X-ray diffraction technique. The microstructural details, morphology and elemental composition were assessed by transmission and scanning electron microscopy attached with EDX. The Fe3O4 nanostructures possess spherical morphology as well as consistent particle size distribution, which is confirmed by HR-SEM. The formation of Fe3O4 with high purity was confirmed by EDX and XRD analysis. The particle size calculated by HR-TEM images and crystallite size through the XRD study showed that the value obtained by both the methods is nearly the same. The catalytic properties of Fe3O4 nanoparticles are examined in the selective oxidation of styrene.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Wang, H. Daimon and S. Sun, Nano Lett., 9, 1493 (2009); https://doi.org/10.1021/nl8034724
- J. Guo, H. Gu, H. Wei, Q. Zhang, N. Haldolaarachchige, Y. Li, D.P. Young, S. Wei and Z. Guo, J. Phys. Chem. C, 117, 10191 (2013); https://doi.org/10.1021/jp402236n
- M. Bahiraei, M. Hangi and A. Rahbari, Appl. Therm. Eng., 147, 991 (2019); https://doi.org/10.1016/j.applthermaleng.2018.11.011
- G.-X. Huang, C.-Y. Wang, C.-W. Yang, P.-C. Guo and H.-Q. Yu, Environ. Sci. Technol., 51, 12611 (2017); https://doi.org/10.1021/acs.est.7b03007
- K.A. Stoerzinger, C.I. Pearce, T.C. Droubay, V. Shutthanandan, A.Shavorskiy, H. Bluhm and K.M. Rosso, J. Phys. Chem. C, 121, 19288 (2017); https://doi.org/10.1021/acs.jpcc.7b06258
- P. Yadoji, R. Peelamedu, D. Agrawal and R. Roy, Mater. Sci. Eng. B, 98, 269 (2003); https://doi.org/10.1016/S0921-5107(03)00063-1
- Y. Ma, H. Peng, J. Liu, Y. Wang, X. Hao, X. Feng, S.U. Khan, H. Tan and Y. Li, Inorg. Chem., 57, 4109 (2018); https://doi.org/10.1021/acs.inorgchem.8b00282
- R. Hajian and A. Ehsanikhah, Chem. Phys. Lett., 691, 146 (2018); https://doi.org/10.1016/j.cplett.2017.11.009
- F. Brühne and E. Wright, Benzaldehyde, in: Ullmann’s Encyclopedia of Industrial Chemistry, edn 4, vol. 2, pp. 223-235 (2003).
- C. Della Pina, E. Falletta and M. Rossi, J. Catal., 260, 384 (2008); https://doi.org/10.1016/j.jcat.2008.10.003
- X. Wu, Z. Ding, N. Song, L. Li and W. Wang, Ceram. Int., 42, 4246 (2016); https://doi.org/10.1016/j.ceramint.2015.11.100
- R.A. Reddy, K.R. Rao, B.R. Babu, G.K. Kumar, C. Rajesh, A. Chatterjee and N.K. Jyothi, Rare Met. (2019); https://doi.org/10.1007/s12598-019-01285-4
- M.A. Almessiere, Y. Slimani, A.D. Korkmaz, S. Guner, M. Sertkol, S.E. Shirsath and A. Baykal, Ultrason. Sonochem., 54, 1 (2019); https://doi.org/10.1016/j.ultsonch.2019.02.022
- M. Hashim, Alimuddin, S.E. Shirsath, S. Kumar, R. Kumar, A.S. Roy, J. Shah and R.K. Kotnala, J. Alloys Compd., 549, 348 (2013); https://doi.org/10.1016/j.jallcom.2012.08.039
- N. Yasmin, I. Inam, I.A. Malik, M. Zahid, M.N. Ashiq, S. Abdulsatar, M. Safdar and M. Mirza, Physica B, 550, 90 (2018); https://doi.org/10.1016/j.physb.2018.08.039
- B. Choudhury and A. Choudhury, Mater. Sci. Eng. B, 178, 794 (2013); https://doi.org/10.1016/j.mseb.2013.03.016
- K. Mandal, S.P. Mandal, P. Agudo and M. Pal, Appl. Surf. Sci., 182, 386 (2001); https://doi.org/10.1016/S0169-4332(01)00455-X
- C. Ragupathi, L.J. Kennedy and JJ. Vijaya, Adv. Powder Technol., 25, 267 (2014); https://doi.org/10.1016/j.apt.2013.04.013
- Q. Zhang, M.F. Zhu, Q.H. Zhang, Y.G. Li and H.Z. Wang, Compos. Sci. Technol., 69, 633 (2009); https://doi.org/10.1016/j.compscitech.2008.12.011
- A. Manikandan, J.J. Vijaya, L.J. Kennedy and M. Bououdina, J. Mol. Struct., 1035, 332 (2013); https://doi.org/10.1016/j.molstruc.2012.11.007
- M.B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J.S. Thakur, G. Lawes, R. Naik, V.M. Naik and P.P. Vaishnava, Appl. Phys. Lett., 93, 231909 (2008); https://doi.org/10.1063/1.3042163
- A. Hajjaji, M. Gaidi, B. Bessais and M.A.E. Khakani, Appl. Surf. Sci.,257, 10351 (2011); https://doi.org/10.1016/j.apsusc.2011.06.072
- M.M. Hassan, W. Khan, A. Azam and A.H. Naqvi, J. Ind. Eng. Chem., 21, 283 (2014); https://doi.org/10.1016/j.jiec.2014.01.047
- R.K. Sendi and S. Mahmud, Appl. Surf. Sci., 258, 8026 (2012); https://doi.org/10.1016/j.apsusc.2012.04.163
- Y. Shen, W. Li and T. Li, Mater. Lett., 65, 2956 (2011); https://doi.org/10.1016/j.matlet.2011.06.033
- E. Rezlescu, N. Rezlescu, C. Pasnicu, M.L. Craus and P.D. Popa, Cryst. Res. Technol., 31, 343 (1996); https://doi.org/10.1002/crat.2170310313
- S. Dietrich, S. Chandra, C. Georgi, S. Thomas, D. Makarov, S. Schulze, M. Hietschold, M. Albrecht, D. Bahadur and H. Lang, Mater. Chem. Phys., 132, 292 (2012); https://doi.org/10.1016/j.matchemphys.2011.11.015
- Y. Köseoglu, A. Baykal, M.S. Toprak, F. Gözüak, A.C. Basaran and B. Aktas, J. Alloys Compd., 462, 209 (2008);https://doi.org/10.1016/j.jallcom.2007.07.121
- C. Ragupathi, J.J. Vijaya and L.J. Kennedy, Mater. Sci. Eng. B, 184, 18 (2014); https://doi.org/10.1016/j.mseb.2014.01.010
- C. Ragupathi, J.J. Vijaya, L.J. Kennedy and M. Bououdina, Mater. Sci.Semicond. Process., 24, 146 (2014); https://doi.org/10.1016/j.mssp.2014.03.026
- C. Ragupathi, J.J. Vijaya, S. Narayanan, S.K. Jesudoss and L.J. Kennedy, Ceram. Int., 41, 2069 (2015); https://doi.org/10.1016/j.ceramint.2014.10.002
References
C. Wang, H. Daimon and S. Sun, Nano Lett., 9, 1493 (2009); https://doi.org/10.1021/nl8034724
J. Guo, H. Gu, H. Wei, Q. Zhang, N. Haldolaarachchige, Y. Li, D.P. Young, S. Wei and Z. Guo, J. Phys. Chem. C, 117, 10191 (2013); https://doi.org/10.1021/jp402236n
M. Bahiraei, M. Hangi and A. Rahbari, Appl. Therm. Eng., 147, 991 (2019); https://doi.org/10.1016/j.applthermaleng.2018.11.011
G.-X. Huang, C.-Y. Wang, C.-W. Yang, P.-C. Guo and H.-Q. Yu, Environ. Sci. Technol., 51, 12611 (2017); https://doi.org/10.1021/acs.est.7b03007
K.A. Stoerzinger, C.I. Pearce, T.C. Droubay, V. Shutthanandan, A.Shavorskiy, H. Bluhm and K.M. Rosso, J. Phys. Chem. C, 121, 19288 (2017); https://doi.org/10.1021/acs.jpcc.7b06258
P. Yadoji, R. Peelamedu, D. Agrawal and R. Roy, Mater. Sci. Eng. B, 98, 269 (2003); https://doi.org/10.1016/S0921-5107(03)00063-1
Y. Ma, H. Peng, J. Liu, Y. Wang, X. Hao, X. Feng, S.U. Khan, H. Tan and Y. Li, Inorg. Chem., 57, 4109 (2018); https://doi.org/10.1021/acs.inorgchem.8b00282
R. Hajian and A. Ehsanikhah, Chem. Phys. Lett., 691, 146 (2018); https://doi.org/10.1016/j.cplett.2017.11.009
F. Brühne and E. Wright, Benzaldehyde, in: Ullmann’s Encyclopedia of Industrial Chemistry, edn 4, vol. 2, pp. 223-235 (2003).
C. Della Pina, E. Falletta and M. Rossi, J. Catal., 260, 384 (2008); https://doi.org/10.1016/j.jcat.2008.10.003
X. Wu, Z. Ding, N. Song, L. Li and W. Wang, Ceram. Int., 42, 4246 (2016); https://doi.org/10.1016/j.ceramint.2015.11.100
R.A. Reddy, K.R. Rao, B.R. Babu, G.K. Kumar, C. Rajesh, A. Chatterjee and N.K. Jyothi, Rare Met. (2019); https://doi.org/10.1007/s12598-019-01285-4
M.A. Almessiere, Y. Slimani, A.D. Korkmaz, S. Guner, M. Sertkol, S.E. Shirsath and A. Baykal, Ultrason. Sonochem., 54, 1 (2019); https://doi.org/10.1016/j.ultsonch.2019.02.022
M. Hashim, Alimuddin, S.E. Shirsath, S. Kumar, R. Kumar, A.S. Roy, J. Shah and R.K. Kotnala, J. Alloys Compd., 549, 348 (2013); https://doi.org/10.1016/j.jallcom.2012.08.039
N. Yasmin, I. Inam, I.A. Malik, M. Zahid, M.N. Ashiq, S. Abdulsatar, M. Safdar and M. Mirza, Physica B, 550, 90 (2018); https://doi.org/10.1016/j.physb.2018.08.039
B. Choudhury and A. Choudhury, Mater. Sci. Eng. B, 178, 794 (2013); https://doi.org/10.1016/j.mseb.2013.03.016
K. Mandal, S.P. Mandal, P. Agudo and M. Pal, Appl. Surf. Sci., 182, 386 (2001); https://doi.org/10.1016/S0169-4332(01)00455-X
C. Ragupathi, L.J. Kennedy and JJ. Vijaya, Adv. Powder Technol., 25, 267 (2014); https://doi.org/10.1016/j.apt.2013.04.013
Q. Zhang, M.F. Zhu, Q.H. Zhang, Y.G. Li and H.Z. Wang, Compos. Sci. Technol., 69, 633 (2009); https://doi.org/10.1016/j.compscitech.2008.12.011
A. Manikandan, J.J. Vijaya, L.J. Kennedy and M. Bououdina, J. Mol. Struct., 1035, 332 (2013); https://doi.org/10.1016/j.molstruc.2012.11.007
M.B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J.S. Thakur, G. Lawes, R. Naik, V.M. Naik and P.P. Vaishnava, Appl. Phys. Lett., 93, 231909 (2008); https://doi.org/10.1063/1.3042163
A. Hajjaji, M. Gaidi, B. Bessais and M.A.E. Khakani, Appl. Surf. Sci.,257, 10351 (2011); https://doi.org/10.1016/j.apsusc.2011.06.072
M.M. Hassan, W. Khan, A. Azam and A.H. Naqvi, J. Ind. Eng. Chem., 21, 283 (2014); https://doi.org/10.1016/j.jiec.2014.01.047
R.K. Sendi and S. Mahmud, Appl. Surf. Sci., 258, 8026 (2012); https://doi.org/10.1016/j.apsusc.2012.04.163
Y. Shen, W. Li and T. Li, Mater. Lett., 65, 2956 (2011); https://doi.org/10.1016/j.matlet.2011.06.033
E. Rezlescu, N. Rezlescu, C. Pasnicu, M.L. Craus and P.D. Popa, Cryst. Res. Technol., 31, 343 (1996); https://doi.org/10.1002/crat.2170310313
S. Dietrich, S. Chandra, C. Georgi, S. Thomas, D. Makarov, S. Schulze, M. Hietschold, M. Albrecht, D. Bahadur and H. Lang, Mater. Chem. Phys., 132, 292 (2012); https://doi.org/10.1016/j.matchemphys.2011.11.015
Y. Köseoglu, A. Baykal, M.S. Toprak, F. Gözüak, A.C. Basaran and B. Aktas, J. Alloys Compd., 462, 209 (2008);https://doi.org/10.1016/j.jallcom.2007.07.121
C. Ragupathi, J.J. Vijaya and L.J. Kennedy, Mater. Sci. Eng. B, 184, 18 (2014); https://doi.org/10.1016/j.mseb.2014.01.010
C. Ragupathi, J.J. Vijaya, L.J. Kennedy and M. Bououdina, Mater. Sci.Semicond. Process., 24, 146 (2014); https://doi.org/10.1016/j.mssp.2014.03.026
C. Ragupathi, J.J. Vijaya, S. Narayanan, S.K. Jesudoss and L.J. Kennedy, Ceram. Int., 41, 2069 (2015); https://doi.org/10.1016/j.ceramint.2014.10.002