Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Controlled Synthesis, Characterization and Magnetic Properties of Unsymmetrical Heterodinuclear CuIIMII (M = Co, Mn and Cd) Complexes in Alkoxo Bridged Acyclic Ligand Environment
Corresponding Author(s) : Dipesh Ghosh
Asian Journal of Chemistry,
Vol. 32 No. 9 (2020): Vol 32 Issue 9, 2020
Abstract
This work reports the syntheses of heterodinuclear Cu(II)-Co(II), Cu(II)-Mn(II) and Cu(II)-Cd(II) complexes following a convenient single-pot synthetic procedure using the two asymmetric binucleating ligands. Site-specificity offered by one of the ligands' arms towards Cu(I) center has been successfully exploited here, avoiding all sorts of impending scrambling reactions. X-ray crystallography and ESI-mass spectral studies have been used to prove the exclusivity of these products. Magnetic studies at variable temperatures (4-300 K) have been proved inadequate to assign any spin-ground state for Cu(II)-Co(II) and Cu(II)-Mn(II) compounds.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O. Kahn, ed.: A.G. Sykes, In Advances in Inorganic Chemistry, vol. 43, Academic Press; San Diego, p. 179 (1995).
- K.S. Murray, In Advances in Inorganic Chemistry, Vol. 43, A.G. Sykes, Ed.; Academic Press; San Diego, p. 261 (1995).
- D.M. Rudkevich, J.D. Mercer-Chalmers, W. Verboom, R. Ungaro, F.de Jong and D.N. Reinhoudt, J. Am. Chem. Soc., 117, 6124 (1995); https://doi.org/10.1021/ja00127a027
- D.M. Rudkevich, W. Verboom, Z. Brzozka, W.P.R.V. Stauthamer, M.J. Palys, G.J. van Hummel, S.M. Franken, S. Harkema, J.F.J. Engbersen and D.N. Reinhoudt, J. Am. Chem. Soc., 116, 4341 (1994); https://doi.org/10.1021/ja00089a023
- P.A. Vigato, S. Tamburini and D.E. Fenton, Coord. Chem. Rev., 106, 25 (1990); https://doi.org/10.1016/0010-8545(60)80002-1
- J.A. Tainer, E.D. Getzoff, K.M. Beem, J.S. Richardson and D.C. Richardson, J. Mol. Biol., 160, 181 (1982); https://doi.org/10.1016/0022-2836(82)90174-7
- J.A. Tainer, E.D. Getzoff, J.S. Richardson and D.C. Richardson, Nature, 306, 284 (1983); https://doi.org/10.1038/306284a0
- N. Sträter, T. Klabunde, P. Tucker, H. Witzel and B. Krebs, Science, 268, 1489 (1995); https://doi.org/10.1126/science.7770774
- C.R. Kissinger, H.E. Parge, D.R. Knighton, C.T. Lewis, L.A. Pelletier, A. Tempczyk, V.J. Kalish, K.D. Tucker, R.E. Showalter, E.W. Moomaw, L.N. Gastinel, N. Habuka, X. Chen, F. Maldonado, J.E. Barker, R.Bacquet and J.E. Villafranca, Nature, 378, 641 (1995); https://doi.org/10.1038/378641a0
- I. Bertini, L. Banci and C. Luchinat, ed.: L. Que, Jr., Metal Clusters in Proteins; ACS Symposium Series 372; American Chemical Society: Washington, DC, pp. 71-84 (1988).
- L. Que Jr. and A.E. True, Prog. Inorg. Chem., 38, 97 (1990); https://doi.org/10.1002/9780470166390.ch3
- J.B. Vincent, G.L. Olivier-Lilley and B.A. Averill, Chem. Rev., 90, 1447 (1990); https://doi.org/10.1021/cr00106a004
- A.L. Feig and S.J. Lippard, Chem. Rev., 94, 759 (1994); https://doi.org/10.1021/cr00027a011
- K.A. Magnus, H. Ton-That and J.E. Carpenter, Chem. Rev., 94, 727 (1994); https://doi.org/10.1021/cr00027a009
- E.I. Solomon, M.J. Baldwin and M.D. Lowery, Chem. Rev., 92, 521 (1992); https://doi.org/10.1021/cr00012a003
- W.H. Lang and K.E. van Holde, Proc. Natl. Acad. Sci. USA, 88, 244 (1991); https://doi.org/10.1073/pnas.88.1.244
- D.E. Fenton and H. Ôkawa, Chem. Ber., 130, 433 (1997); https://doi.org/10.1002/cber.19971300402
- H. Ôkawa, H. Furutachi and D.E. Fenton, Coord. Chem. Rev., 174, 51 (1998); https://doi.org/10.1016/S0010-8545(97)00082-9
- D.E. Fenton, In Advances in Inorganic and Bioinorganic Mechanism, Vol. 43, A.G. Sykes, Ed.; Academic Press; London, p. 187 (1983).
- H. Furutachi and H. Ôkawa, Inorg. Chem., 36, 3911 (1997); https://doi.org/10.1021/ic9700563
- J.D. Crane, D.E. Fenton, J.M. Latour and A.J. Smith, J. Chem. Soc., Dalton Trans., 2979 (1991); https://doi.org/10.1039/dt9910002979
- C. Fraser, L. Johnston, A.L. Rheingold, B.S. Haggerty, G.K. Williams, J. Whelan and B. Bosnich, Inorg. Chem., 31, 1835 (1992); https://doi.org/10.1021/ic00036a022
- D.G. McCollum, G.P.A. Yap, A.L. Rheingold and B. Bosnich, J. Am. Chem. Soc., 118, 1365 (1996); https://doi.org/10.1021/ja952873c
- P. Kamaras, M.C. Cajulis, M. Rapta, G.A. Brewer and G.B. Jameson, J. Am. Chem. Soc., 116, 10334 (1994); https://doi.org/10.1021/ja00101a077
- Y. Hayashi, T. Kayatani, H. Sugimoto, M. Suzuki, K. Inomata, A. Uehara, Y. Mizutani, T. Kitagawa and Y. Maeda, J. Am. Chem. Soc., 117, 11220 (1995); https://doi.org/10.1021/ja00150a020
- J.H. Satcher Jr., M.W. Droege, T.J.R. Weakley and R.T. Taylor, Inorg. Chem., 34, 3317 (1995); https://doi.org/10.1021/ic00116a026
- B. Eulering, M. Schmidt, U. Pinkernell, U. Karst and B. Krebs, Angew. Chem. Int. Ed. Engl., 35, 1973 (1996); https://doi.org/10.1002/anie.199619731
- D. Volkmer, A. Hörstmann, K. Griesar, W. Haase and B. Krebs, Inorg. Chem., 35, 1132 (1996); https://doi.org/10.1021/ic950368a
- D. Volkmer, B. Hommerich, K. Griesar, W. Haase and B. Krebs, Inorg. Chem., 35, 3792 (1996); https://doi.org/10.1021/ic951567x
- M. Konrad, F. Meyer, K. Heinze and L. Zsolnai, J. Chem. Soc., Dalton Trans., 199 (1998); https://doi.org/10.1039/a705543i
- M. Konrad, S. Wuthe, F. Meyer and E. Kaifer, Eur. J. Inorg. Chem., 2233 (2001); https://doi.org/10.1002/1099-0682(200109)2001:9<2233::AIDEJIC2233>3.0.CO;2-4
- Q.Y. Chen, Q.-H. Luo, Z.-L. Wang and J.-T. Chen, Chem. Commun., 1033 (2000); https://doi.org/10.1039/a909926n
- H. He, A.E. Martell, R.J. Motekaitis and J.H. Reibenspies, Inorg. Chem., 39, 1586 (2000); https://doi.org/10.1021/ic9911264
- N.C. Gianneschi, C.A. Mirkin, L.N. Zakharov and A.L. Rheingold, Inorg. Chem., 41, 5326 (2002); https://doi.org/10.1021/ic025875o
- M. Botta, U. Casellato, C. Scalco, S. Tamburini, P. Tomasin, P.A. Vigato, S. Aime and A. Barge, Chem. Eur. J., 8, 3917 (2002); https://doi.org/10.1002/1521-3765(20020902)8:17<3917::AIDCHEM3917>3.0.CO;2-D
- S. Bhattacharyya, D. Ghosh, S. Mukhopadhyay, W.P. Jensen, E.R.T. Tiekink and M. Chaudhury, J. Chem. Soc., Dalton Trans., 4677 (2000); https://doi.org/10.1039/b005906o
- D.D. Perrin, W.L.F. Armarego and D.R. Perrin, Purification of Laboratory Chemicals, Pergamon: Oxford, England, edn. 2 (1980).
- W.R. Robinson, J. Chem. Educ., 62, 1001 (1985); https://doi.org/10.1021/ed062p1001
- N. Walker and D. Stuart, Acta Crystallogr. A, 39, 158 (1983); https://doi.org/10.1107/S0108767383000252
- SADABS, v 2.01, Bruker AXS Inc., Madison, WI, USA (2000).
- P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. GarcíaGranda, J.M.M. Smits and C. Smykalla, The DIRDIF Program System, Technical Report of the Crystallography Laboratory, University of Nijmegen, Netherlands (1992).
- G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany (1997).
- C.K. Johnson, ‘ORTEP II’, Report ORNL-5138; Oak Ridge National Laboratory, TN, USA (1976).
- teXsan: Structure Analysis Software; Molecular Structure Corporation: The Woodlands, TX, USA (1997).
- K. Abe, K. Matsufuji, M. Ohba and H. Ôkawa, Inorg. Chem., 41, 4461 (2002); https://doi.org/10.1021/ic020002f
- H. Adams, D.E. Fenton, S.R. Haque, S.L. Heath, M. Ohba, H. Ôkawa and S.E. Spey, J. Chem. Soc., Dalton Trans., 1849 (2000); https://doi.org/10.1039/b001395l
- C. Juarez-Garcia, M.P. Hendrich, T.R. Holman, L. Que Jr. and E. Münck, J. Am. Chem. Soc., 113, 518 (1991); https://doi.org/10.1021/ja00002a020
- T.R. Holman, C. Juarez-Garcia, M.P. Hendrich, L. Que Jr. and E. Münck, J. Am. Chem. Soc., 112, 7611 (1990); https://doi.org/10.1021/ja00177a024
- A.S. Borovik, V. Papaefthymiou, L.F. Taylor, O.P. Anderson and L. Que Jr., J. Am. Chem. Soc., 111, 6183 (1989); https://doi.org/10.1021/ja00198a032
- M. Suzuki, S. Fujinami, T. Hibino, H. Hori, Y. Maeda, A. Uehara and M. Suzuki, Inorg. Chim. Acta, 283, 124 (1998); https://doi.org/10.1016/S0020-1693(98)00226-6
- G. Murphy, P. Nagle, B. Murphy and B. Hathaway, J. Chem. Soc., Dalton Trans., 2645 (1997); https://doi.org/10.1039/a702291c
- G. Murphy, C. O’Sullivan, B. Murphy and B. Hathaway, Inorg. Chem., 37, 240 (1998); https://doi.org/10.1021/ic970458a
- A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn and G.C. Verschoor, J. Chem. Soc., Dalton Trans., 1349 (1984); https://doi.org/10.1039/DT9840001349
- S. Bhattacharyya, S.B. Kumar, S.K. Dutta, E.R.T. Tiekink and M. Chaudhury, Inorg. Chem., 35, 1967 (1996); https://doi.org/10.1021/ic950594k
- S.B. Kumar, S. Bhattacharyya, S.K. Dutta, E.R.T. Tiekink and M. Chaudhury, J. Chem. Soc., Dalton Trans., 2619 (1995); https://doi.org/10.1039/dt9950002619
- D. Ghosh, N. Kundu, G. Maity, K.-Y. Choi, A. Caneschi, A. Endo and M. Chaudhury, Inorg. Chem., 43, 6015 (2004); https://doi.org/10.1021/ic049449+
- B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 5, 143 (1970); https://doi.org/10.1016/S0010-8545(00)80135-6
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: New York, edn 2 (1984).
- M. Ciampolini, Struct. Bonding (Berlin), 6, 52 (1969); https://doi.org/10.1007/BFb0118854
- J.S. Wood, Inorg. Chem., 7, 852 (1968); https://doi.org/10.1021/ic50063a002
- J.L. Hughey IV, T.G. Fawcett, S.M. Rudich, R.A. Lalancette, J.A. Potenza and H.J. Schugar, J. Am. Chem. Soc., 101, 2617 (1979); https://doi.org/10.1021/ja00504a020
- M. Yonemura, Y. Matsumura, H. Furutachi, M. Ohba, H. Ôkawa and D.E. Fenton, Inorg. Chem., 36, 2711 (1997); https://doi.org/10.1021/ic9614430
References
O. Kahn, ed.: A.G. Sykes, In Advances in Inorganic Chemistry, vol. 43, Academic Press; San Diego, p. 179 (1995).
K.S. Murray, In Advances in Inorganic Chemistry, Vol. 43, A.G. Sykes, Ed.; Academic Press; San Diego, p. 261 (1995).
D.M. Rudkevich, J.D. Mercer-Chalmers, W. Verboom, R. Ungaro, F.de Jong and D.N. Reinhoudt, J. Am. Chem. Soc., 117, 6124 (1995); https://doi.org/10.1021/ja00127a027
D.M. Rudkevich, W. Verboom, Z. Brzozka, W.P.R.V. Stauthamer, M.J. Palys, G.J. van Hummel, S.M. Franken, S. Harkema, J.F.J. Engbersen and D.N. Reinhoudt, J. Am. Chem. Soc., 116, 4341 (1994); https://doi.org/10.1021/ja00089a023
P.A. Vigato, S. Tamburini and D.E. Fenton, Coord. Chem. Rev., 106, 25 (1990); https://doi.org/10.1016/0010-8545(60)80002-1
J.A. Tainer, E.D. Getzoff, K.M. Beem, J.S. Richardson and D.C. Richardson, J. Mol. Biol., 160, 181 (1982); https://doi.org/10.1016/0022-2836(82)90174-7
J.A. Tainer, E.D. Getzoff, J.S. Richardson and D.C. Richardson, Nature, 306, 284 (1983); https://doi.org/10.1038/306284a0
N. Sträter, T. Klabunde, P. Tucker, H. Witzel and B. Krebs, Science, 268, 1489 (1995); https://doi.org/10.1126/science.7770774
C.R. Kissinger, H.E. Parge, D.R. Knighton, C.T. Lewis, L.A. Pelletier, A. Tempczyk, V.J. Kalish, K.D. Tucker, R.E. Showalter, E.W. Moomaw, L.N. Gastinel, N. Habuka, X. Chen, F. Maldonado, J.E. Barker, R.Bacquet and J.E. Villafranca, Nature, 378, 641 (1995); https://doi.org/10.1038/378641a0
I. Bertini, L. Banci and C. Luchinat, ed.: L. Que, Jr., Metal Clusters in Proteins; ACS Symposium Series 372; American Chemical Society: Washington, DC, pp. 71-84 (1988).
L. Que Jr. and A.E. True, Prog. Inorg. Chem., 38, 97 (1990); https://doi.org/10.1002/9780470166390.ch3
J.B. Vincent, G.L. Olivier-Lilley and B.A. Averill, Chem. Rev., 90, 1447 (1990); https://doi.org/10.1021/cr00106a004
A.L. Feig and S.J. Lippard, Chem. Rev., 94, 759 (1994); https://doi.org/10.1021/cr00027a011
K.A. Magnus, H. Ton-That and J.E. Carpenter, Chem. Rev., 94, 727 (1994); https://doi.org/10.1021/cr00027a009
E.I. Solomon, M.J. Baldwin and M.D. Lowery, Chem. Rev., 92, 521 (1992); https://doi.org/10.1021/cr00012a003
W.H. Lang and K.E. van Holde, Proc. Natl. Acad. Sci. USA, 88, 244 (1991); https://doi.org/10.1073/pnas.88.1.244
D.E. Fenton and H. Ôkawa, Chem. Ber., 130, 433 (1997); https://doi.org/10.1002/cber.19971300402
H. Ôkawa, H. Furutachi and D.E. Fenton, Coord. Chem. Rev., 174, 51 (1998); https://doi.org/10.1016/S0010-8545(97)00082-9
D.E. Fenton, In Advances in Inorganic and Bioinorganic Mechanism, Vol. 43, A.G. Sykes, Ed.; Academic Press; London, p. 187 (1983).
H. Furutachi and H. Ôkawa, Inorg. Chem., 36, 3911 (1997); https://doi.org/10.1021/ic9700563
J.D. Crane, D.E. Fenton, J.M. Latour and A.J. Smith, J. Chem. Soc., Dalton Trans., 2979 (1991); https://doi.org/10.1039/dt9910002979
C. Fraser, L. Johnston, A.L. Rheingold, B.S. Haggerty, G.K. Williams, J. Whelan and B. Bosnich, Inorg. Chem., 31, 1835 (1992); https://doi.org/10.1021/ic00036a022
D.G. McCollum, G.P.A. Yap, A.L. Rheingold and B. Bosnich, J. Am. Chem. Soc., 118, 1365 (1996); https://doi.org/10.1021/ja952873c
P. Kamaras, M.C. Cajulis, M. Rapta, G.A. Brewer and G.B. Jameson, J. Am. Chem. Soc., 116, 10334 (1994); https://doi.org/10.1021/ja00101a077
Y. Hayashi, T. Kayatani, H. Sugimoto, M. Suzuki, K. Inomata, A. Uehara, Y. Mizutani, T. Kitagawa and Y. Maeda, J. Am. Chem. Soc., 117, 11220 (1995); https://doi.org/10.1021/ja00150a020
J.H. Satcher Jr., M.W. Droege, T.J.R. Weakley and R.T. Taylor, Inorg. Chem., 34, 3317 (1995); https://doi.org/10.1021/ic00116a026
B. Eulering, M. Schmidt, U. Pinkernell, U. Karst and B. Krebs, Angew. Chem. Int. Ed. Engl., 35, 1973 (1996); https://doi.org/10.1002/anie.199619731
D. Volkmer, A. Hörstmann, K. Griesar, W. Haase and B. Krebs, Inorg. Chem., 35, 1132 (1996); https://doi.org/10.1021/ic950368a
D. Volkmer, B. Hommerich, K. Griesar, W. Haase and B. Krebs, Inorg. Chem., 35, 3792 (1996); https://doi.org/10.1021/ic951567x
M. Konrad, F. Meyer, K. Heinze and L. Zsolnai, J. Chem. Soc., Dalton Trans., 199 (1998); https://doi.org/10.1039/a705543i
M. Konrad, S. Wuthe, F. Meyer and E. Kaifer, Eur. J. Inorg. Chem., 2233 (2001); https://doi.org/10.1002/1099-0682(200109)2001:9<2233::AIDEJIC2233>3.0.CO;2-4
Q.Y. Chen, Q.-H. Luo, Z.-L. Wang and J.-T. Chen, Chem. Commun., 1033 (2000); https://doi.org/10.1039/a909926n
H. He, A.E. Martell, R.J. Motekaitis and J.H. Reibenspies, Inorg. Chem., 39, 1586 (2000); https://doi.org/10.1021/ic9911264
N.C. Gianneschi, C.A. Mirkin, L.N. Zakharov and A.L. Rheingold, Inorg. Chem., 41, 5326 (2002); https://doi.org/10.1021/ic025875o
M. Botta, U. Casellato, C. Scalco, S. Tamburini, P. Tomasin, P.A. Vigato, S. Aime and A. Barge, Chem. Eur. J., 8, 3917 (2002); https://doi.org/10.1002/1521-3765(20020902)8:17<3917::AIDCHEM3917>3.0.CO;2-D
S. Bhattacharyya, D. Ghosh, S. Mukhopadhyay, W.P. Jensen, E.R.T. Tiekink and M. Chaudhury, J. Chem. Soc., Dalton Trans., 4677 (2000); https://doi.org/10.1039/b005906o
D.D. Perrin, W.L.F. Armarego and D.R. Perrin, Purification of Laboratory Chemicals, Pergamon: Oxford, England, edn. 2 (1980).
W.R. Robinson, J. Chem. Educ., 62, 1001 (1985); https://doi.org/10.1021/ed062p1001
N. Walker and D. Stuart, Acta Crystallogr. A, 39, 158 (1983); https://doi.org/10.1107/S0108767383000252
SADABS, v 2.01, Bruker AXS Inc., Madison, WI, USA (2000).
P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. GarcíaGranda, J.M.M. Smits and C. Smykalla, The DIRDIF Program System, Technical Report of the Crystallography Laboratory, University of Nijmegen, Netherlands (1992).
G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany (1997).
C.K. Johnson, ‘ORTEP II’, Report ORNL-5138; Oak Ridge National Laboratory, TN, USA (1976).
teXsan: Structure Analysis Software; Molecular Structure Corporation: The Woodlands, TX, USA (1997).
K. Abe, K. Matsufuji, M. Ohba and H. Ôkawa, Inorg. Chem., 41, 4461 (2002); https://doi.org/10.1021/ic020002f
H. Adams, D.E. Fenton, S.R. Haque, S.L. Heath, M. Ohba, H. Ôkawa and S.E. Spey, J. Chem. Soc., Dalton Trans., 1849 (2000); https://doi.org/10.1039/b001395l
C. Juarez-Garcia, M.P. Hendrich, T.R. Holman, L. Que Jr. and E. Münck, J. Am. Chem. Soc., 113, 518 (1991); https://doi.org/10.1021/ja00002a020
T.R. Holman, C. Juarez-Garcia, M.P. Hendrich, L. Que Jr. and E. Münck, J. Am. Chem. Soc., 112, 7611 (1990); https://doi.org/10.1021/ja00177a024
A.S. Borovik, V. Papaefthymiou, L.F. Taylor, O.P. Anderson and L. Que Jr., J. Am. Chem. Soc., 111, 6183 (1989); https://doi.org/10.1021/ja00198a032
M. Suzuki, S. Fujinami, T. Hibino, H. Hori, Y. Maeda, A. Uehara and M. Suzuki, Inorg. Chim. Acta, 283, 124 (1998); https://doi.org/10.1016/S0020-1693(98)00226-6
G. Murphy, P. Nagle, B. Murphy and B. Hathaway, J. Chem. Soc., Dalton Trans., 2645 (1997); https://doi.org/10.1039/a702291c
G. Murphy, C. O’Sullivan, B. Murphy and B. Hathaway, Inorg. Chem., 37, 240 (1998); https://doi.org/10.1021/ic970458a
A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn and G.C. Verschoor, J. Chem. Soc., Dalton Trans., 1349 (1984); https://doi.org/10.1039/DT9840001349
S. Bhattacharyya, S.B. Kumar, S.K. Dutta, E.R.T. Tiekink and M. Chaudhury, Inorg. Chem., 35, 1967 (1996); https://doi.org/10.1021/ic950594k
S.B. Kumar, S. Bhattacharyya, S.K. Dutta, E.R.T. Tiekink and M. Chaudhury, J. Chem. Soc., Dalton Trans., 2619 (1995); https://doi.org/10.1039/dt9950002619
D. Ghosh, N. Kundu, G. Maity, K.-Y. Choi, A. Caneschi, A. Endo and M. Chaudhury, Inorg. Chem., 43, 6015 (2004); https://doi.org/10.1021/ic049449+
B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 5, 143 (1970); https://doi.org/10.1016/S0010-8545(00)80135-6
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: New York, edn 2 (1984).
M. Ciampolini, Struct. Bonding (Berlin), 6, 52 (1969); https://doi.org/10.1007/BFb0118854
J.S. Wood, Inorg. Chem., 7, 852 (1968); https://doi.org/10.1021/ic50063a002
J.L. Hughey IV, T.G. Fawcett, S.M. Rudich, R.A. Lalancette, J.A. Potenza and H.J. Schugar, J. Am. Chem. Soc., 101, 2617 (1979); https://doi.org/10.1021/ja00504a020
M. Yonemura, Y. Matsumura, H. Furutachi, M. Ohba, H. Ôkawa and D.E. Fenton, Inorg. Chem., 36, 2711 (1997); https://doi.org/10.1021/ic9614430