Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Amino Acids Content in Different Korean Cultivars of Rapeseed (Brassica napus)
Corresponding Author(s) : Sang Un Park
Asian Journal of Chemistry,
Vol. 29 No. 7 (2017): Vol 29 Issue 7
Abstract
This study assessed the variation in amino acid contents of five different Korean cultivars of rapeseed (Brassica napus). Twenty-two amino acids were detected in the cultivars of rapeseed and the amino acid content varied greatly among the cultivars. The Tamra cultivar contains the highest total quantity of amino acids, with values 43.29, 24.12, 6.46 and 3.43 % higher than the total amino acid contents of the Hanlla, Youngsan, Naehan and Tammi cultivars, respectively. The Tamra cultivar also contained the highest levels of eight different amino acids. The g-amino butyric acid content was very high in the cultivars and was higher than the levels of half of the other amino acids. The levels of alanine and arginine were also higher than those of the other amino acids irrespective of cultivar. The Tammi cultivar contains the highest levels of alanine and arginine, which were 2.03 and 5.59 times higher, respectively, than those in the Hanlla cultivar, which had the lowest concentrations of these amino acids. Moderate levels of the amino acids serine, glutamine, threonine, cysteine, valine, norvaline, phenylalanine and isoleucine were found in each cultivar, at quantities more than 10 mg/100 g dry weight. The levels of serine, cysteine, valine and phenylalanine in the Tamra cultivar were 1.65, 1.78, 2.52 and 3.25 times higher, respectively, than those in the Hanlla cultivar, which had the lowest concentrations of these amino acids. The levels of glutamate, vitamin U, histidine, tyrosine, methionine, tryptophan and leucine were the lowest of the amino acids measured irrespective of cultivar, with Tamra containing the highest levels for most of these amino acids. In conclusion, the present results demonstrate that Korean rapeseed cultivars contain variable quantities of amino acids, with the Tamra cultivar showing the greatest potential to serve as a commercial source of amino acids.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Ferreres, C. Sousa, P. Valentao, R.M. Seabra, J.A. Pereira and P.B. Andrade, Food Chem., 101, 549 (2007); https://doi.org/10.1016/j.foodchem.2006.02.013.
- D. Zohary and M. Hopf, Domestication of Plants in the Old World, University Press, Oxford, edn 3 (2000).
- B. Kusznierewicz, A. Bartoszek, L. Wolska, J. Drzewiecki, S. Gorinstein and J. Namiesnik, LWT-Food Sci. Technol., 41, 1 (2008); https://doi.org/10.1016/j.lwt.2007.02.007.
- S.I. Warwick, A. Francis and I.A. Al-Shehbaz, PI Syst. Evol., 259, 249 (2006); https://doi.org/10.1007/s00606-006-0422-0.
- N. Baenas, D.A. Moreno and C. Garcia-Viguera, J. Agric. Food Chem., 60, 11409 (2012); https://doi.org/10.1021/jf302863c.
- M.E. Cartea, M. Francisco, P. Soengas and P. Velasco, Molecules, 16, 251 (2010); https://doi.org/10.3390/molecules16010251.
- A. Podsedek, LWT-Food Sci. Technol., 40, 1 (2007); https://doi.org/10.1016/j.lwt.2005.07.023.
- C.K. Labanauskas, L.H. Stolzy and M.F. Handy, Plant Soil, 59, 299 (1981); https://doi.org/10.1007/BF02184202.
- H. Lorenz, Plant Soil, 45, 163 (1976); https://doi.org/10.1007/BF00011138.
- L. Shen, J.G. Foster and D.M. Orcutt, J. Exp. Bot., 40, 71 (1989); https://doi.org/10.1093/jxb/40.1.71.
- H. Ghiasi, C. Paech and C.D. Dybing, Plant Physiol., 85, 91 (1987); https://doi.org/10.1104/pp.85.1.91.
- A.H. Khalil and E.H. Mansour, Food Chem., 54, 177 (1995); https://doi.org/10.1016/0308-8146(95)00024-D.
- S. Mahe, N. Gausseres and D. Tome, Grain Legumes, 7, 15 (1994).
- R. Marcuse, J. Am. Oil Chem. Soc., 39, 97 (1962); https://doi.org/10.1007/BF02631680.
- M.E. Carlotti, M. Gallarate, M.R. Gasco, S. Morel, A. Serafino and E. Ugazio, Int. J. Pharm., 155, 251 (1997); https://doi.org/10.1016/S0378-5173(97)00168-3.
- S.H. Sha and J. Schacht, Hear. Res., 142, 34 (2000); https://doi.org/10.1016/S0378-5955(00)00003-4.
- H.Y. Fu, D.E. Shieh and C.T. Ho, J. Food Lipids, 9, 35 (2002); https://doi.org/10.1111/j.1745-4522.2002.tb00206.x.
- H. Gomes and E. Rosa, J. Sci. Food Agric., 81, 295 (2001); https://doi.org/10.1002/1097-0010(200102)81:3<295::AIDJSFA811>3.0.CO;2-#.
- G.S. Gilani, C. Xiao and N. Lee, J. AOAC Int., 91, 894 (2008).
- D.J. Millward, D.K. Layman, D. Tom and G. Schaafsma, Am. J. Clin. Nutr., 87, 1576S (2008).
- Y.K. Kim, H. Xu, N.I. Park, H.O. Boo, S.Y. Lee and S.U. Park, J. Med. Plants Res., 3, 897 (2009).
- G. Lohaus and C. Moellers, Planta, 211, 833 (2000); https://doi.org/10.1007/s004250000349.
- L. Wang, H. Cao, C. Chen, C. Yue, X. Hao, Y. Yang and X. Wang, J. Proteomics, 130, 160 (2016); https://doi.org/10.1016/j.jprot.2015.08.019.
- Y. Liu, D. Ragone and S.J. Murch, Amino Acids, 47, 847 (2015); https://doi.org/10.1007/s00726-015-1914-4.
- F. Feng, M. Li, F. Ma and L. Cheng, Hortic. Res., 23, 14019 (2014); https://doi.org/10.1038/hortres.2014.19.
- S.H. Choi, J.B. Ahn, N. Kozukue, C.E. Levin and M. Friedman, J. Agric. Food Chem., 59, 6594 (2011); https://doi.org/10.1021/jf200371r.
- L.E.A. James, Adv. Food Nutr. Res., 58, 1 (2009); https://doi.org/10.1016/S1043-4526(09)58001-1.
- N.M.A. Nassar, O.P. Junior, M.V. Sousa and R. Ortiz, Recent Patents Food Nutr. Agric., 1, 32 (2009); https://doi.org/10.2174/2212798410901010032.
- M.D.C.B.M. De Vasconcelos, R.N. Bennett, E.A.S. Rosa and J.V.F. Cardoso, J. Agric. Food Chem., 55, 3508 (2007); https://doi.org/10.1021/jf0629080.
- C. Matsuura-Endo, A. Ohara-Takada, Y. Chuda, H. Ono, H. Yada, M. Yoshida, A. Kobayashi, S. Tsuda, S. Takigawa, T. Noda, H. Yamauchi and M. Mori, Biosci. Biotechnol. Biochem., 70, 1173 (2006); https://doi.org/10.1271/bbb.70.1173.
- C.G. Zarkadas, H.D. Voldeng, Z.R. Yu and V.K. Choi, J. Agric. Food Chem., 47, 5009 (1999); https://doi.org/10.1021/jf981381r.
- O. Lamikanra and A.K. Kassa, J. Agric. Food Chem., 47, 4837 (1999); https://doi.org/10.1021/jf981085e
References
F. Ferreres, C. Sousa, P. Valentao, R.M. Seabra, J.A. Pereira and P.B. Andrade, Food Chem., 101, 549 (2007); https://doi.org/10.1016/j.foodchem.2006.02.013.
D. Zohary and M. Hopf, Domestication of Plants in the Old World, University Press, Oxford, edn 3 (2000).
B. Kusznierewicz, A. Bartoszek, L. Wolska, J. Drzewiecki, S. Gorinstein and J. Namiesnik, LWT-Food Sci. Technol., 41, 1 (2008); https://doi.org/10.1016/j.lwt.2007.02.007.
S.I. Warwick, A. Francis and I.A. Al-Shehbaz, PI Syst. Evol., 259, 249 (2006); https://doi.org/10.1007/s00606-006-0422-0.
N. Baenas, D.A. Moreno and C. Garcia-Viguera, J. Agric. Food Chem., 60, 11409 (2012); https://doi.org/10.1021/jf302863c.
M.E. Cartea, M. Francisco, P. Soengas and P. Velasco, Molecules, 16, 251 (2010); https://doi.org/10.3390/molecules16010251.
A. Podsedek, LWT-Food Sci. Technol., 40, 1 (2007); https://doi.org/10.1016/j.lwt.2005.07.023.
C.K. Labanauskas, L.H. Stolzy and M.F. Handy, Plant Soil, 59, 299 (1981); https://doi.org/10.1007/BF02184202.
H. Lorenz, Plant Soil, 45, 163 (1976); https://doi.org/10.1007/BF00011138.
L. Shen, J.G. Foster and D.M. Orcutt, J. Exp. Bot., 40, 71 (1989); https://doi.org/10.1093/jxb/40.1.71.
H. Ghiasi, C. Paech and C.D. Dybing, Plant Physiol., 85, 91 (1987); https://doi.org/10.1104/pp.85.1.91.
A.H. Khalil and E.H. Mansour, Food Chem., 54, 177 (1995); https://doi.org/10.1016/0308-8146(95)00024-D.
S. Mahe, N. Gausseres and D. Tome, Grain Legumes, 7, 15 (1994).
R. Marcuse, J. Am. Oil Chem. Soc., 39, 97 (1962); https://doi.org/10.1007/BF02631680.
M.E. Carlotti, M. Gallarate, M.R. Gasco, S. Morel, A. Serafino and E. Ugazio, Int. J. Pharm., 155, 251 (1997); https://doi.org/10.1016/S0378-5173(97)00168-3.
S.H. Sha and J. Schacht, Hear. Res., 142, 34 (2000); https://doi.org/10.1016/S0378-5955(00)00003-4.
H.Y. Fu, D.E. Shieh and C.T. Ho, J. Food Lipids, 9, 35 (2002); https://doi.org/10.1111/j.1745-4522.2002.tb00206.x.
H. Gomes and E. Rosa, J. Sci. Food Agric., 81, 295 (2001); https://doi.org/10.1002/1097-0010(200102)81:3<295::AIDJSFA811>3.0.CO;2-#.
G.S. Gilani, C. Xiao and N. Lee, J. AOAC Int., 91, 894 (2008).
D.J. Millward, D.K. Layman, D. Tom and G. Schaafsma, Am. J. Clin. Nutr., 87, 1576S (2008).
Y.K. Kim, H. Xu, N.I. Park, H.O. Boo, S.Y. Lee and S.U. Park, J. Med. Plants Res., 3, 897 (2009).
G. Lohaus and C. Moellers, Planta, 211, 833 (2000); https://doi.org/10.1007/s004250000349.
L. Wang, H. Cao, C. Chen, C. Yue, X. Hao, Y. Yang and X. Wang, J. Proteomics, 130, 160 (2016); https://doi.org/10.1016/j.jprot.2015.08.019.
Y. Liu, D. Ragone and S.J. Murch, Amino Acids, 47, 847 (2015); https://doi.org/10.1007/s00726-015-1914-4.
F. Feng, M. Li, F. Ma and L. Cheng, Hortic. Res., 23, 14019 (2014); https://doi.org/10.1038/hortres.2014.19.
S.H. Choi, J.B. Ahn, N. Kozukue, C.E. Levin and M. Friedman, J. Agric. Food Chem., 59, 6594 (2011); https://doi.org/10.1021/jf200371r.
L.E.A. James, Adv. Food Nutr. Res., 58, 1 (2009); https://doi.org/10.1016/S1043-4526(09)58001-1.
N.M.A. Nassar, O.P. Junior, M.V. Sousa and R. Ortiz, Recent Patents Food Nutr. Agric., 1, 32 (2009); https://doi.org/10.2174/2212798410901010032.
M.D.C.B.M. De Vasconcelos, R.N. Bennett, E.A.S. Rosa and J.V.F. Cardoso, J. Agric. Food Chem., 55, 3508 (2007); https://doi.org/10.1021/jf0629080.
C. Matsuura-Endo, A. Ohara-Takada, Y. Chuda, H. Ono, H. Yada, M. Yoshida, A. Kobayashi, S. Tsuda, S. Takigawa, T. Noda, H. Yamauchi and M. Mori, Biosci. Biotechnol. Biochem., 70, 1173 (2006); https://doi.org/10.1271/bbb.70.1173.
C.G. Zarkadas, H.D. Voldeng, Z.R. Yu and V.K. Choi, J. Agric. Food Chem., 47, 5009 (1999); https://doi.org/10.1021/jf981381r.
O. Lamikanra and A.K. Kassa, J. Agric. Food Chem., 47, 4837 (1999); https://doi.org/10.1021/jf981085e