Copyright (c) 2024 N V V JYOTHI, K. SAJITHA, V.V.P.C. NARAYANA, V. BALA YESU, D. M. MANJUNATH, P. SURESH YADAV, K. VAMSI, D. SURESH BABU, V. MURALI, A. M. UTTAM Yesu, A. ANITHA, J. BHANU PRASAD, M. CHANDRA SUBHASH, D. SRINIVASULU
This work is licensed under a Creative Commons Attribution 4.0 International License.
Design, Synthesis and in silico Study of Diarylsulfide Piperazine-Amide Hybrids as Antibacterial Motifs
Corresponding Author(s) : N.V.V. Jyothi
Asian Journal of Chemistry,
Vol. 37 No. 1 (2025): Vol 37 Issue 1, 2025
Abstract
Novel antimicrobial drugs are required to fight the serious global health challenge of antibiotic resistance. In this study, 12 hybrids of diarylsulfide (DAS) piperazine-amide 8a-l were synthesized. All the 12 compounds were assessed for the antibacterial study against Gram-positive and Gram-negative bacteria. Antibacterial structure-activity relationship (SAR) analysis revealed that disubstituted compounds, particularly 8h (3,4-dinitro) and 8j (2,4-dichloro), exhibited superior antibacterial activity and also states that ortho-substituted compounds performing better than para-substituted ones. Molecular docking studies further strengthened antibacterial efficacy of disubstituted compounds 8h (-7.58 kcal/mol) and 8j (7.14 kcal/mol) exhibited the highest binding affinity to the DNA gyr. A enzyme, interacting with essential residues critical for bacterial DNA replication. It was concluded that strong binding, alongside favourable lower RMSD values, allows these compounds to effectively inhibit DNA gyrase. Therefore, these DAS piperazine-amide compounds represent promising lead compounds for further study as antibacterial agents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Narendrakumar, M. Chakraborty, S. Kumari, D. Paul and B. Das, Front. Microbiol., 13, 1092556 (2023); https://doi.org/10.3389/fmicb.2022.1092556
- X. Lin and U. Kück, Appl. Microbiol. Biotechnol., 106, 8007 (2022); https://doi.org/10.1007/s00253-022-12272-8
- S.J. Dancer, J. Antimicrob. Chemother., 48, 463 (2001); https://doi.org/10.1093/jac/48.4.463
- R.W. Jadhav, M. Al Kobaisi, L.A. Jones, A. Vinu and S.V. Bhosale, ChemistryOpen, 8, 1154 (2019); https://doi.org/10.1002/open.201900193
- F. von Nussbaum, M. Brands, B. Hinzen, S. Weigand and D. Häbich, Angew. Chem. Int. Ed., 45, 5072 (2006); https://doi.org/10.1002/anie.200600350
- A.B. Shaik, R.R. Bhandare, S. Nissankararao, S. Shahanaaz, B.V.S. Lokesh and M.M. Rahman, Arab. J. Chem., 14, 102915 (2021); https://doi.org/10.1016/j.arabjc.2020.102915
- R. Domalaon, G. G. Zhanel and F. Schweizer, Curr. Top. Med. Chem., 16, 1217 (2016); https://doi.org/10.2174/1568026615666150915112459
- R.R. Bhandare, C. S.Munikrishnappa, G.V. Suresh Kumar, S.K. Konidala, D.K. Sigalapalli, Y. Vaishnav, S. Chinnam, H. Yasin, A.A. Al-Karmalawy and A.B. Shaik, J. Saudi Chem. Soc., 26, 1 (2022); https://doi.org/10.1016/j.jscs.2022.101447
- F. Abedinifar, S. Bahadorikhalili, B. Larijani, M. Mahdavi and F. Verpoort, Appl. Organomet. Chem., 36, e6482 (2022); https://doi.org/10.1002/aoc.6482
- A. Rosas-Hernández, C. Steinlechner, H. Junge and M. Beller, Top. Curr. Chem., 376, 1 (2018); https://doi.org/10.1007/s41061-017-0179-7
- D.B. Janakiramudu, D.S. Rao, K. Madhu, G. Madhava, C.N. Raju and P.V. Chalapathi, Org. Commun., 10, 201 (2017); https://doi.org/10.25135/acg.oc.19.16.12.455
- J. Vercouillie, S. Mavel, L. Galineau, T. Ragusa, R. Innis, M. Kassiou, S. Chalon, F. Dollé, J.-C. Besnard, D. Guilloteau and P. Emond, Bioorg. Med. Chem. Lett., 16, 1297 (2006); https://doi.org/10.1016/j.bmcl.2005.11.066
- M. Asif, Int. J. Adv. Sci. Res., 1, 5 (2015); https://doi.org/10.7439/ijasr.v1i1.1766
- C.P. Meher, A.M. Rao and M. Omar, Asian J. Pharm. Sci. Res., 3, 43 (2013).
- M. Tugrak, H.I. Gul, K. Bandow, H. Sakagami, I. Gulcin, Y. Ozkay and C.T. Supuran, Bioorg. Chem., 90, 103095 (2019); https://doi.org/10.1016/j.bioorg.2019.103095
- H.A. Saadeh, I.M. Mosleh and M.S. Mubarak, Molecules, 14, 1483 (2009); https://doi.org/10.3390/molecules14041483
- T. Khan, K. Sankhe, V. Suvarna, A. Sherje, K. Patel and B. Dravyakar, Biomed. Pharmacother., 103, 923 (2018); https://doi.org/10.1016/j.biopha.2018.04.021
- R.K. Thalji, K. Raha, D. Andreotti, A. Checchia, H. Cui, G. Meneghelli, R. Profeta, F. Tonelli, S. Tommasi, T. Bakshi, B.T. Donovan, A. Howells, S. Jain, C. Nixon, G. Quinque, L. McCloskey, B.D. Bax, M. Neu, P.F. Chan and R.A. Stavenger, Bioorg. Med. Chem. Lett., 29, 1407 (2019); https://doi.org/10.1016/j.bmcl.2019.03.029
- T. Khan, K. Sankhe, V. Suvarna, A. Sherje, K. Patel and B. Dravyakar, Biomed. Pharmacother., 103, 923 (2018); https://doi.org/10.1016/j.biopha.2018.04.021
- D. Rajasekhar, D. Srinivasulu, C. Sridhar, G.V.N. Kumar and P. Ramesh, J. Chin. Chem. Soc., 63, 267 (2016); https://doi.org/10.1002/jccs.201500143
References
L. Narendrakumar, M. Chakraborty, S. Kumari, D. Paul and B. Das, Front. Microbiol., 13, 1092556 (2023); https://doi.org/10.3389/fmicb.2022.1092556
X. Lin and U. Kück, Appl. Microbiol. Biotechnol., 106, 8007 (2022); https://doi.org/10.1007/s00253-022-12272-8
S.J. Dancer, J. Antimicrob. Chemother., 48, 463 (2001); https://doi.org/10.1093/jac/48.4.463
R.W. Jadhav, M. Al Kobaisi, L.A. Jones, A. Vinu and S.V. Bhosale, ChemistryOpen, 8, 1154 (2019); https://doi.org/10.1002/open.201900193
F. von Nussbaum, M. Brands, B. Hinzen, S. Weigand and D. Häbich, Angew. Chem. Int. Ed., 45, 5072 (2006); https://doi.org/10.1002/anie.200600350
A.B. Shaik, R.R. Bhandare, S. Nissankararao, S. Shahanaaz, B.V.S. Lokesh and M.M. Rahman, Arab. J. Chem., 14, 102915 (2021); https://doi.org/10.1016/j.arabjc.2020.102915
R. Domalaon, G. G. Zhanel and F. Schweizer, Curr. Top. Med. Chem., 16, 1217 (2016); https://doi.org/10.2174/1568026615666150915112459
R.R. Bhandare, C. S.Munikrishnappa, G.V. Suresh Kumar, S.K. Konidala, D.K. Sigalapalli, Y. Vaishnav, S. Chinnam, H. Yasin, A.A. Al-Karmalawy and A.B. Shaik, J. Saudi Chem. Soc., 26, 1 (2022); https://doi.org/10.1016/j.jscs.2022.101447
F. Abedinifar, S. Bahadorikhalili, B. Larijani, M. Mahdavi and F. Verpoort, Appl. Organomet. Chem., 36, e6482 (2022); https://doi.org/10.1002/aoc.6482
A. Rosas-Hernández, C. Steinlechner, H. Junge and M. Beller, Top. Curr. Chem., 376, 1 (2018); https://doi.org/10.1007/s41061-017-0179-7
D.B. Janakiramudu, D.S. Rao, K. Madhu, G. Madhava, C.N. Raju and P.V. Chalapathi, Org. Commun., 10, 201 (2017); https://doi.org/10.25135/acg.oc.19.16.12.455
J. Vercouillie, S. Mavel, L. Galineau, T. Ragusa, R. Innis, M. Kassiou, S. Chalon, F. Dollé, J.-C. Besnard, D. Guilloteau and P. Emond, Bioorg. Med. Chem. Lett., 16, 1297 (2006); https://doi.org/10.1016/j.bmcl.2005.11.066
M. Asif, Int. J. Adv. Sci. Res., 1, 5 (2015); https://doi.org/10.7439/ijasr.v1i1.1766
C.P. Meher, A.M. Rao and M. Omar, Asian J. Pharm. Sci. Res., 3, 43 (2013).
M. Tugrak, H.I. Gul, K. Bandow, H. Sakagami, I. Gulcin, Y. Ozkay and C.T. Supuran, Bioorg. Chem., 90, 103095 (2019); https://doi.org/10.1016/j.bioorg.2019.103095
H.A. Saadeh, I.M. Mosleh and M.S. Mubarak, Molecules, 14, 1483 (2009); https://doi.org/10.3390/molecules14041483
T. Khan, K. Sankhe, V. Suvarna, A. Sherje, K. Patel and B. Dravyakar, Biomed. Pharmacother., 103, 923 (2018); https://doi.org/10.1016/j.biopha.2018.04.021
R.K. Thalji, K. Raha, D. Andreotti, A. Checchia, H. Cui, G. Meneghelli, R. Profeta, F. Tonelli, S. Tommasi, T. Bakshi, B.T. Donovan, A. Howells, S. Jain, C. Nixon, G. Quinque, L. McCloskey, B.D. Bax, M. Neu, P.F. Chan and R.A. Stavenger, Bioorg. Med. Chem. Lett., 29, 1407 (2019); https://doi.org/10.1016/j.bmcl.2019.03.029
T. Khan, K. Sankhe, V. Suvarna, A. Sherje, K. Patel and B. Dravyakar, Biomed. Pharmacother., 103, 923 (2018); https://doi.org/10.1016/j.biopha.2018.04.021
D. Rajasekhar, D. Srinivasulu, C. Sridhar, G.V.N. Kumar and P. Ramesh, J. Chin. Chem. Soc., 63, 267 (2016); https://doi.org/10.1002/jccs.201500143