Copyright (c) 2024 sunil Tonde, kalpendra Rajurkar, Nitin Pagar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Lactic Acid via Palladium-Catalyzed Carbonylation of Vinyl Acetate
Corresponding Author(s) : N.S. Pagar
Asian Journal of Chemistry,
Vol. 36 No. 11 (2024): Vol 36 Issue 11, 2024
Abstract
The methoxycarbonylation of vinyl acetate monomer (VAM) was studied with Pd-catalysts at 5.4 MPa CO partial pressure and 373 K. The effects of several acidic and basic ligands in the presence and absence of a promoter were investigated. Using pyridine as ligand in the [PdCl2(PPh3)2]-TsOH catalyst system resulted in 90.01% conversion of VAM and 76.12% selectivity for carbonylation products (methyl-2-acetoxypropionate and methyl lactate). The VAM methoxycarbonylation could be facilitated in a non-polar solvent media and produces methyl-2-acetoxypropionate and methyl lactate, which can be easily converted to lactic acid via hydrolysis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kumar, J. Singh and C. Baskar, in eds: J. Singh, V. Meshram and M. Gupta, Lactic Acid Production and Its Application in Pharmaceuticals. Bioactive Natural products in Drug Discovery, Springer, Singapore (2020); https://doi.org/10.1007/978-981-15-1394-7_16
- F.A. Castillo Martinez, E.M. Balciunas, J.M. Salgado, J.M. Domínguez González, A. Converti and R.P.S. Oliveira, Trends Food Sci. Technol., 30, 70 (2013); https://doi.org/10.1016/j.tifs.2012.11.007
- R. Datta, S.P. Tsai, P. Bonsignore, S.H. Moon and J.R. Frank, FEMS Microbiol. Rev., 16, 221 (1995); https://doi.org/10.1111/j.1574-6976.1995.tb00168.x
- A.O. Ojo and O. de Smidt, Processes (Basel), 11, 688 (2023); https://doi.org/10.3390/pr11030688
- A. Komesu, J.A.R. Oliveira, L.H.S. Martins, M.R. Wolf Maciel and R. Maciel Filho, BioResources, 12, 4364 (2017); https://doi.org/10.15376/biores.12.2.Komesu
- A.J.A. Maris, W.N. Konings, J.P. Dijken and J.T. Pronk, Metab. Eng., 6, 245 (2004); https://doi.org/10.1016/j.ymben.2004.05.001
- J. Parajo, J. Alonso and V. Santos, Process Biochem., 31, 271 (1996); https://doi.org/10.1016/0032-9592(95)00059-3
- N. Nancib, A. Nancib, A. Boudjelal, C. Benslimane, F. Blanchard and J. Boudrant, Bioresour. Technol., 78, 149 (2001); https://doi.org/10.1016/S0960-8524(01)00009-8
- M. Hujanen and Y.Y. Linko, Appl. Microbiol. Biotechnol., 45, 307 (1996); https://doi.org/10.1007/s002530050688
- Y. Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tang, Y. Wang, C. Zhu, Z. Cao, G. Wang and H. Wan, Nat. Commun., 4, 2141 (2013); https://doi.org/10.1038/ncomms3141
- U. Kulozik and J. Wilde, Enzyme Microb. Technol., 24, 297 (1999); https://doi.org/10.1016/S0141-0229(98)00122-7
- N.G. Khouri, J.O. Bahú, C. Blanco-Llamero, P. Severino, V.O.C. Concha and E.B. Souto, J. Mol. Struct., 1309, 138243 (2024); https://doi.org/10.1016/j.molstruc.2024.138243
- M.S. Singhvi, S.S. Zinjarde and D.V. Gokhale, J. Appl. Microbiol., 127, 1612 (2019); https://doi.org/10.1111/jam.14290
- R.E. Graham, A.J. Rucklidge and D. Cole-Hamilton, Carbonylation of Vinylacetate, US Patent 2006O128985A1 (2006).
- D. Cole-Hamilton, G.R. Eastham and A.J. Rucklidge, Carbonylation of Vinyl Acetate, US Patent 2003278375A1 (2004).
- G.R. Eastham, A.J. Rucklidge and D. Cole-Hamilton, Carbonylation of Vinylacetate, WO2004050599A1 Patent (2004).
- H. Moell, Verfahren zur Aufbereitung von Oxoreaktionsgemischen, DE Patent 1272911 (1966).
- S.T. Gadge and B.M. Bhanage, RSC Adv., 4, 10367 (2014); https://doi.org/10.1039/c3ra46273k
- C. Árvai and L.T. Mika, Chin. J. Chem., 42, 406 (2024); https://doi.org/10.1002/cjoc.202300490
- H.B. Tinkar, Production of Lactic Acid, US Patent 4072709 (1978).
- D.E. Morris, Hydrocarboxylation of Vinyl Alkanoates, US Patent 4377708 (1983).
- M.C. Cesa and J.D. Burrington, Alkoxycarbonylation or Carbonylation with Carbon Monoxide and Organic Hydroxyl Compound, European Patent 0144118 (1984).
- K. Kudo, Y. Oida, K. Mitsuhashi, S. Mori, K. Komatsu and N. Sugita, Bull. Chem. Soc. Jpn., 69, 1337 (1996); https://doi.org/10.1246/bcsj.69.1337
- C.A. McAuliffe, Transition Metal Complexes of Phosphorus, Arsenic, and Antimony Ligands, Red Globe Press London: Macmillan Education UK (1973).
References
A. Kumar, J. Singh and C. Baskar, in eds: J. Singh, V. Meshram and M. Gupta, Lactic Acid Production and Its Application in Pharmaceuticals. Bioactive Natural products in Drug Discovery, Springer, Singapore (2020); https://doi.org/10.1007/978-981-15-1394-7_16
F.A. Castillo Martinez, E.M. Balciunas, J.M. Salgado, J.M. Domínguez González, A. Converti and R.P.S. Oliveira, Trends Food Sci. Technol., 30, 70 (2013); https://doi.org/10.1016/j.tifs.2012.11.007
R. Datta, S.P. Tsai, P. Bonsignore, S.H. Moon and J.R. Frank, FEMS Microbiol. Rev., 16, 221 (1995); https://doi.org/10.1111/j.1574-6976.1995.tb00168.x
A.O. Ojo and O. de Smidt, Processes (Basel), 11, 688 (2023); https://doi.org/10.3390/pr11030688
A. Komesu, J.A.R. Oliveira, L.H.S. Martins, M.R. Wolf Maciel and R. Maciel Filho, BioResources, 12, 4364 (2017); https://doi.org/10.15376/biores.12.2.Komesu
A.J.A. Maris, W.N. Konings, J.P. Dijken and J.T. Pronk, Metab. Eng., 6, 245 (2004); https://doi.org/10.1016/j.ymben.2004.05.001
J. Parajo, J. Alonso and V. Santos, Process Biochem., 31, 271 (1996); https://doi.org/10.1016/0032-9592(95)00059-3
N. Nancib, A. Nancib, A. Boudjelal, C. Benslimane, F. Blanchard and J. Boudrant, Bioresour. Technol., 78, 149 (2001); https://doi.org/10.1016/S0960-8524(01)00009-8
M. Hujanen and Y.Y. Linko, Appl. Microbiol. Biotechnol., 45, 307 (1996); https://doi.org/10.1007/s002530050688
Y. Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tang, Y. Wang, C. Zhu, Z. Cao, G. Wang and H. Wan, Nat. Commun., 4, 2141 (2013); https://doi.org/10.1038/ncomms3141
U. Kulozik and J. Wilde, Enzyme Microb. Technol., 24, 297 (1999); https://doi.org/10.1016/S0141-0229(98)00122-7
N.G. Khouri, J.O. Bahú, C. Blanco-Llamero, P. Severino, V.O.C. Concha and E.B. Souto, J. Mol. Struct., 1309, 138243 (2024); https://doi.org/10.1016/j.molstruc.2024.138243
M.S. Singhvi, S.S. Zinjarde and D.V. Gokhale, J. Appl. Microbiol., 127, 1612 (2019); https://doi.org/10.1111/jam.14290
R.E. Graham, A.J. Rucklidge and D. Cole-Hamilton, Carbonylation of Vinylacetate, US Patent 2006O128985A1 (2006).
D. Cole-Hamilton, G.R. Eastham and A.J. Rucklidge, Carbonylation of Vinyl Acetate, US Patent 2003278375A1 (2004).
G.R. Eastham, A.J. Rucklidge and D. Cole-Hamilton, Carbonylation of Vinylacetate, WO2004050599A1 Patent (2004).
H. Moell, Verfahren zur Aufbereitung von Oxoreaktionsgemischen, DE Patent 1272911 (1966).
S.T. Gadge and B.M. Bhanage, RSC Adv., 4, 10367 (2014); https://doi.org/10.1039/c3ra46273k
C. Árvai and L.T. Mika, Chin. J. Chem., 42, 406 (2024); https://doi.org/10.1002/cjoc.202300490
H.B. Tinkar, Production of Lactic Acid, US Patent 4072709 (1978).
D.E. Morris, Hydrocarboxylation of Vinyl Alkanoates, US Patent 4377708 (1983).
M.C. Cesa and J.D. Burrington, Alkoxycarbonylation or Carbonylation with Carbon Monoxide and Organic Hydroxyl Compound, European Patent 0144118 (1984).
K. Kudo, Y. Oida, K. Mitsuhashi, S. Mori, K. Komatsu and N. Sugita, Bull. Chem. Soc. Jpn., 69, 1337 (1996); https://doi.org/10.1246/bcsj.69.1337
C.A. McAuliffe, Transition Metal Complexes of Phosphorus, Arsenic, and Antimony Ligands, Red Globe Press London: Macmillan Education UK (1973).