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INTRODUCTION

Compounds containing substituted carbonitriles are the
important building blocks utilized in synthesis of various agro-
chemicals, natural products, herbicides, dyes and pharmaceu-
ticals [1,2]. The nitrile moieties are highly versatile functional
groups in organic synthesis and could be employed as an inter-
mediate for the synthesis of various other functional groups
and heterocycles. Nitriles are the important precursors for the
synthesis of amines, amidines, amides, carboxylic acids, esters,
ketones, etc. [3]. The nitrile groups can also be found in biol-
ogically active drugs including periciazine (an antipsychotic
medicine), letrazole and fadrozole (a breast cancer treatment),
HIV protease inhibitors and 5-lipoxygenase inhibitors and
citalopram (an antidepressant drug) [4,5].

The nucleophilic displacement of the leaving groups such
as halogens, alcohols, nitro or amino groups, esters, ethers
and diazonium salts with inorganic cyanide ions are the well-
known procedures for the synthesis of nitriles [6]. The other
methods for nitrile synthesis [7] includes dehydration of amides
and aldoximes [8], from alcohols [9], aldehydes [10-12], carbo-
xylic acids using various reagents [13-18] and direct transfor-
mation of amines [19,20]. The conventional methods involve
hazardous chemicals, expensive catalysts, difficult reaction
conditions and substrates [21-23]. Various methods for the trans-
formation of nitriles into aldehydes such as o-phenylhydroxyl-
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amine [24], chloramination [25], ammonium carbamate [26],
Schmidt reaction [27], TEMPO (2,2,6,6-tetramethylpiperi-
dinyl-l-oxy) as mediator [28], catalyst free method in glycerol
as a green solvent using hydroxyl amine hydrochlorides [1]
are also reported in the literature. However, these methods are
very long, tedious and expensive. So, direct conversion of
aldehydes to nitriles using readily available hydroxylamine
hydrochloride might help to overcome the economic and
environmental difficulties faced by the conventional methods.
Thus, in this work, a catalyst free, one-pot synthetic stregedy
of the conversion of aldehydes into nitriles, using hydroxyl-
amines without oxime intermediates isolation is reported.

EXPERIMENTAL

The chemicals utilized in the reaction were procured from
Sigma-Aldrich (USA). Analytical thin layer chromatography
was carried out on aluminium sheets precoated with silica gel
[CCM Gel de silice 60 F254 with a thickness of 0.2 mm (Merck)].
Column chromatography was carried out using silica gel (230-
400 mesh, Merck, India).

Melting points were measured on Galen III hot stage
equipment (Cambridge Instruments). FTIR spectrophotometer-
Lambda Scientific was used to record FTIR spectra. 1H & 13C
NMR spectral data were obtained at 400 and 100 MHz, respec-
tively, using a Bruker spectrometer using deuterated chloro-
form with tetramethylsilane (TMS) as an internal standard.
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The JEOL GC MATE-II HR Mass (70 eV) E1 spectrometer
was used to record mass spectra.

General procedure for the synthesis of carbonitriles
(2a-j): In a round bottom flask, pyrazole aldehydes (1.0 mmol)
and hydroxylamine hydrochloride (1.0 mmol) were added in
glycerol (5 mL). The reaction mixture was stirred at 90 ºC for
20 min. The reaction completion was confirmed using TLC.
After the completion of reaction, the reaction mixture was
washed with hexane/ethyl acetate mixture (95:5) (3 × 5 mL).
The organic phase was separated from the glycerol, dried with
MgSO4 and evaporated using rotatory evaporator under reduced
pressure (Scheme-I). The crude products were purified using
column chromatography with hexane/ethyl acetate eluent.

1,3-Diphenyl-1H-pyrazole-4-carbonitrile (2a): White
solid; yield: 96%; time: 20 min; Rf = 0.35 (15% EA-PE); 1H
NMR: (300 MHz, CDCl3, δ ppm): 7.37-7.42 (m, 5H), 7.44-
7.74 (m, 5H), 8.91 (s, 1H); 13C NMR (300 MHz, CDCl3) δ
ppm: 113.87, 119.36, 119.66, 125.96, 127.16, 127.26, 128.54,
128.76, 128.82, 129.08, 129.54, 131.94, 132.08, 139.53, 143.41

and 153.84; HRMS (ESI): m/z [M]+ 245; Anal. calcd. (found)
% for C16H11N3: C, 78.35 (78.33); H, 4.52 (4.48); N, 17.13
(17.10).

3-(4-Bromophenyl)-1-phenyl-1H-pyrazole-4-carbo-
nitrile (2b): White solid; yield: 89%; time: 20 min; Rf = 0.40
(15% EA-PE); 1H NMR: (300 MHz, CDCl3, δ ppm): 7.42-7.68
(m, 5H), 7.55 (dd, 2H), 7.68 (dd, 2H), 8.44 (s, 1H); 13C NMR
(300 MHz, CDCl3): 93.4,113.5, 118.36, 119.91, 126.21, 128.29,
128.86, 129.01, 129.36, 129.51, 129.73, 129.94, 133.0, 134.34,
139.87, 150.05; HRMS (ESI): m/z [M]+ 324; Anal. calcd. (found)
% for C16H10N3Br: C, 59.28 (59.25); H, 3.11 (3.06); N, 12.96
(12.93);  Br, 24.65 (24.60).

3-(4-Chlorophenyl)-1-phenyl-1H-pyrazole-4-carbo-
nitrile (2c): White solid; yield: 92%; time: 20 min; Rf = 0.45
(15% EA-PE); 1H NMR: (300 MHz, CDCl3, δ ppm): 7.44-7.78
(m, 5H), 7.91 (dd, 2H), 7.55 (dd, 2H), 8.41 (s, 1H); 13C NMR
(300 MHz, CDCl3, δ ppm): 93.9, 113.9, 118.96, 119.01, 123.21,
126.21, 128.39, 129.31, 129.56, 130.05, 132.15, 132.57, 133.50,
139.54, 139.87, 150.12; HRMS (ESI): m/z [M]+ 279; Anal.
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Scheme-I: Synthesis of carbonitriles
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calcd. (found) % for C16H10N3Cl: C, 68.70 (68.19); H, 3.60
(3.55); N, 15.02 (14.95); Cl, 12.67 (13.62).

3-(4-Methoxyphenyl)-1-phenyl-1H-pyrazole-4-carbo-
nitrile (2d): White solid; yield: 96%; time: 22 min; Rf = 0.50
(15% EA-PE); 1H NMR: (300 MHz, CDCl3, δ ppm): 3.84 (t,
3H), 7.46-7.69 (m, 5H), 7.03 (dd, 2H), 7.55 (dd, 2H), 8.49 (s,
1H); 13C NMR (300 MHz, CDCl3, δ ppm): 55.8,93.1,113.9,
114.8, 119.51, 119.73, 123.59, 126.20, 128.56, 128.81, 128.93,
129.36, 129.56, 134.34, 139.73, 133.04, 150.25; HRMS (ESI):
m/z [M]+ 275; Anal. calcd. (found) % for C17H13N3O: C, 74.17
(74.14); H, 4.76 (4.73); N, 15.26 (15.24); O, 5.81 (5.78).

3-(4-Ethoxyphenyl)-1-phenyl-1H-pyrazole-4-carbo-
nitrile (2e): White solid; yield: 90%; time: 20 min; Rf = 0.35
(15% EA-PE); 1H NMR: (300 MHz, CDCl3, δ ppm): 1.35 (t,
3H), 4.07(d, 2H), 7.45-7.63 (m, 5H), 7.08 (dd, 2H), 7.62 (dd,
2H), 8.39 (s, 1H); 13C NMR (300 MHz, CDCl3, δ ppm): 14.8,
64.6, 93.7, 113.9, 114.36, 118.91, 126.26, 127.29, 128.26, 128.91,
129.06, 129.41, 129.63, 129.84, 133.05, 134.54, 147.87 and
150.32; HRMS (ESI): m/z [M]+ 289; Anal. calcd. (found) %
for C18H15N3O: C, 74.72 (74.65); H, 5.23 (5.19); N, 14.52 (14.47);
O, 5.53 (5.50).

3-(2,4-Dichlorophenyl)-1-phenyl-1H-pyrazole-4-
carbonitrile (2f): White solid; yield: 90%; time: 25 min; Rf =
0.45 (15% EA-PE); 1H NMR: (300 MHz, CDCl3, δ ppm): 7.38-
8.03 (m, 8H), 8.36 (s, 1H); 13C NMR (300 MHz, CDCl3, δ ppm):
93.6, 113.5, 120.1, 126.4, 127.8, 128.0, 129.7, 131.0, 131.4,
133.6, 134.2, 136.1, 140.3, 150.9; HRMS (ESI): m/z [M]+ 314;
Anal. calcd. (found) % for C16H9N3Cl2: C, 61.17 (61.07); H, 2.89
(2.81); N, 13.38 (13.30); Cl, 22.57 (22.52).

3-(4-Nitrophenyl)-1-phenyl-1H-pyrazole-4-carbo-
nitrile (2g): white solid; yield: 94%; time: 25 min; Rf = 0.40
(15% EA-PE); 1H NMR: (300 MHz, CDCl3, δ ppm): 7.40-7.78
(m, 5H), 7.97 (dd, 2H), 8.26 (dd, 2H), 8.49 (s, 1H); 13C NMR
(300 MHz, CDCl3, δ ppm): 93.1,113.46, 118.56, 119.95, 124.21,
124.59, 126.26, 126.31, 126.56, 129.34, 129.79, 133.54, 137.05,
139.34, 147.07, 150.29; HRMS (ESI): m/z [M]+ 290; Anal.
calcd. (found) % for C16H10N4O2: C, 66.20 (66.21); H, 3.47
(3.41); O, 11.02 (10.96); N, 19.30 (19.26).

3-(4-Aminophenyl)-1-phenyl-1H-pyrazole-4-carbo-
nitrile (2h): White solid; yield: 92%; time: 22 min; Rf = 0.50
(15% EA-PE); 1H NMR: (300 MHz, CDCl3, δ ppm): 5.24 (t,
2H), 7.38-7.58 (m, 5H), 6.59 (dd, 2H), 7.65 (dd, 2H), 8.90 (s,
1H); 13C NMR (300 MHz, CDCl3): 93.0,112.95, 113.39, 115.21,
115.51, 119.19, 119.46, 119.81, 121.02, 126.21, 128.63, 128.94,
129.0, 129.4, 139.8 and 150.16; HRMS (ESI): m/z [M]+ 260;
Anal. calcd. (found) % for C16H12N4: C, 73.83 (73.79); H, 4.65
(4.62); N, 21.52 (21.49); Br, 24.62 (24.60).

3-(3-Bromophenyl)-1-phenyl-1H-pyrazole-4-carbo-
nitrile (2i): White solid; yield: 90%; time: 20 min; Rf = 0.55
(15% EA-PE); 1H NMR: (300 MHz, CDCl3, δ ppm): 7.42-7.83
(m, 9H), 8.42 (s, 1H); 13C NMR (300 MHz, CDCl3, δ ppm):
93.8, 113.4, 120.6, 126.8, 127.3, 128.5, 129.2, 131.3, 131.8,
133.9, 134.7, 136.9, 140.1, 150.5; HRMS (ESI): m/z [M]+ 324;
Anal. calcd. (found) % for C16H10N3Br: C, 59.28 (59.24); H,
3.11 (3.06); Br, 24.65 (24.60); N, 12.96 (12.91).

1-Phenyl-3-(p-tolyl)-1H-pyrazole-4-carbonitrile (2j):
White solid; yield: 88%; time: 24 min; Rf = 0.45 (15% EA-PE);

1H NMR: (300 MHz, CDCl3, δ ppm): 2.34 (t, 3H), 7.39-7.62
(m, 5H), 7.17 (dd, 2H), 7.58 (dd, 2H), 8.43 (s, 1H); 13C NMR
(300 MHz, CDCl3): 21.7, 93.2, 113.9, 119.36, 119.95, 125.21,
125.79, 126.26, 128.01, 129.56, 129.91, 129.97, 131.44, 133.0,
139.34, 139.87 and 150.5; HRMS (ESI): m/z [M]+ 259; Anal.
calcd. (found) % for C17H13N3: C, 78.74 (79.25); H, 3.05 (3.06);
N, 16.20 (16.93); Br, 24.63 (24.60).

RESULTS AND DISCUSSION

In the presence of glycerol, hydroxylamine hydrochloride
was introduced to pyrazole aldehyde 1a and stirred for 20 min
at 90 ºC. To get good outstanding yields of carbonitriles, the
reaction mixture was extracted with ethyl acetate and further
purified with column chromatography (15% ethyl acetate-pet.
ether mixture). The structures of the synthesized compounds
were thoroughly characterized using 1H, 13C NMR and HRMS
spectroscopic techniques. Using different solvents viz. water,
ethanol, ethylene glycol, glycerol and a mixture of water-
glycerol were used as screening solvent and it was revealed
that while using glycerol, the best results were obtained (Table-1).

TABLE-1 
SCREENING OF SOLVENT 

Entry Solvent Isolated yield (%) 
1 Water Trace 
2 Ethanol Trace 
3 Ethylene glycol Trace 
4 Glycerol 92 
5 Water-glycerol 30 

 
The 1H NMR spectrum of compound 2a exhibited ten

protons multiplet at δ 7.37-7.74 ppm, which was attributed to
aromatic protons. The singlet δ 8.91 ppm was assigned to
pyrazole ring proton. In 13C NMR spectra, the peaks ranges
between 119.3-143.4 ppm were assigned to aromatic ring
carbons. The carbon at position 3, 4 and 5 of pyrazole ring are
appeared at 153.84, 113.87 and 132.08 ppm respectively. The
peak at 119.36 ppm showed to nitrile carbon. The HRMS spec-
trum reveals the molecular ion peak [M]+ at m/z 245.

Conclusion

In summary, a novel, effective and one-pot catalyst-free
method was proposed for the synthesis of carbonitriles from
pyrazole aldehydes using hydroxylamine hydrochloride in
glycerol as a green solvent. The method was straightforward,
efficient with high product yields, has high atom economy
and environmentally benign with mild reaction conditions and
is environmentally friendly. The synthesized compounds were
characterized using 1H, 13C NMR and HRMS.
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