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I N T R O D U C T I O N

The fused heterocyclic compounds attracted much attention
in the field of medicinal chemistry because of their significant
contribution in the biological profile of drug. Multicomponent
reactions (MCRs) as a powerful tool have been widely utilized
in organic synthesis, combinatorial and medicinal chemistry
due to their simplicity and flexibility, good yield, high varia-
bility and selectivity, greater atom economy, energy savings
and reduced waste. In the past decades, MCRs were used to
construct a number of interesting heterocyclic scaffolds having
‘drug-like’ properties [1].

Fused heterocyclic compounds comprising nitrogen and
sulphur are important because of their interesting pharmaco-
logical properties [2]. Among these compounds benzothiazoles
and pyrimido[2,1-b]benzothiazoles have enticed considerable
attention. Some of these compounds have different biological
properties such as antiviral [3], antitumor [4], anti-inflamma-
tory [5], antiallergic [6], antimicrobial [7], anticonvulsant [8],
antiproliferative [9] and antifungal [10].

Pyrimido[2,1-b]benzothiazole derivatives were synthesized
via multicomponent reactions between 2-amino benzothiazole,
aromatic aldehydes and β-ketoesters [11]. Previously, this
reaction has been catalyzed by iron fluoride [12], acetic acid

The silicotungstic acid catalyzed microwave assisted synthesis of
substituted 4H-pyrimido[2,1-b]thiazole and 4H-pyrimido[2,1-
b]benzothiazole derivatives was achieved by one-pot multi-component
reaction of 2-aminothiazole or 2-aminobenzthiazole, aldehyde and
ethyl acetoacetate under solvent-free condition. A simple, rapid and
environmental friendly protocol, good yields and easy work-up are
some advantages of this protocol. The structures of the synthesized
compounds were established by FT-IR, 1H NMR and mass spectral
data.
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[13], pyridine [7], chitosan [14], aluminium trichloride [15],
1,1,3,3-N,N,N’,N’-tetramethylguanidinium tri-fluoroacetate
(TMGT) [16], tetrabutylammonium hydrogen sulphate
(TBAHS) [17], N-sulfonic acid modified poly(styrene-maleic
anhydride) (SMI-SO3H) and Fe3O4@nano-cellulose/TiCl [18].
Several reactions possess advantages over traditional reactions
in organic solvents such as solvent-free multicomponent reactions
with recyclable heterogeneous catalysts decrease the consump-
tion of hazardous solvents and utilize scaled-down reaction
vessels. However some of the reported protocols have harsh
reaction conditions with prolonged reaction times.

The usage of solid acids as heterogeneous catalyst has
received much attention in different areas of organic synthesis
[19]. Heteropolyacids (HPAs) have numerous advantages,
comprising high flexibility on modification of the acid strength,
ease of handling, experimental simplicity, non-toxicity and
environmental compatibility [20]. They are known to have a
strong Brønsted acidity and found to be very efficient in Lewis
acid catalyzed conventional reactions. Thus, the use of HPAs
as a catalyst makes the process convenient and environmentally
benign. HPAs found to possess outstanding catalytic properties
in the dehydration of diols, rearrangements, tetrahydropyrany-
lation of alcohols, Friedel-Craft alkylation, Prins reaction,
synthesis of dihydroquinolines, pyrimidine synthesis, Biginelli
reaction and Dakin-West reaction [21].

In a view of unlimited importance of pyrimidothiazole
derivatives, we herein report a simple, rapid and high yielding
microwave assisted one-pot multicomponent reaction protocol
for the synthesis of pyrimidothiazole and pyrimidobenzothiazole
derivatives employing environmentally benign silicotungstic
acid (H4[SiW12O40]) as a heterogeneous catalyst under solvent-
free conditions (Scheme-I).

E X P E R I M E N T A L

All the chemicals and solvents used were of analytical
grade and used without purification. All the reactions were
monitored by thin layer chromatography, (TLC silica gel 60
F254 by Merck) and were visualized under a UV lamp and using
iodine vapours. The melting points were ascertained with a
digital thermometer and are uncorrected. IR spectra were recor-
ded on FT-IR spectrometer (Perkin Elmer). 1H NMR spectra
were recorded on Bruker DRX FT spectrometer at 400 MHz

using acetone-d6 and CDCl3 as a solvent. Chemical shift values
recorded are mentioned in parts per million (ppm) and observed
downfield from TMS, while coupling constants (J) are referred
to in hertz (Hz).

General procedure for the synthesis of pyrimidothia-
zoles and pyrimidobenzothiazoles (4a-f/5a-f): A mixture of
2-amino benzthiazole or 2-aminothiazole (1 mmol), appro-
priate aldehyde (1 mmol), ethyl acetoacetate (1 mmol) and
silicotungstic acid (5 mol%) was placed in a microwave vial
with snap on cap. The reaction mixture was subjected to micro-
wave irradiation for appropriate time at 300 W in a conven-
tional microwave oven. After completion of reaction (TLC),
the reaction mixture was cooled to room temperature and
ethanol (2 mL) added to it. Poured the mixture into ice cold
water and precipitate obtained was filtered, dried and purified
by column chromatography using petroleum ether:ethyl acetate
as eluent (90:10) (Scheme-I).

Spectral data of the synthesized compounds

Ethyl-2-methyl-4-phenyl-4H-benzo[4,5]thiazolo[3,2-
a]pyrimidine-3-carboxylate (4a): Pale yellow solid; m.p.:
176-178 °C; IR (KBr, νmax, cm-1): 1692, 1591, 1466, 1248,
745; 1H NMR (400 MHz, acetone-d6): δ = 7.68 (dd, J = 8, 1.2
Hz, 1H, ArH), 7.53-7.50 (m, 2H, ArH), 7.42 (dd, J = 8, 1.2
Hz, 1H, ArH), 7.31-7.36 (m, 3H, ArH), 7.22-7.27 (m, 2H, ArH),
6.49 (s, 1H-CH-), 4.05 (q, J = 7.2 Hz, 2H,-CH2), 2.36 (s, 3H,-
CH3), 1.22 (t, J = 7.2 Hz, 3H, -CH3); LCMS (ESI): 351.08
(M+1).

Ethyl-4-(4-chlorophenyl)-2-methyl-4H-benzo[4,5]-
thiazolo[3,2-a]pyrimidine-3-carboxylate (4b): Pale yellow
solid; m.p.: 88-90 °C; IR (KBr, νmax, cm-1): 1695, 1590, 1468,
1250, 744; 1H NMR (400 MHz, acetone-d6): δ = 7.66 (dd, J =
8, 1.2 Hz, 1H, ArH), 7.48 (d, J = 7.6 Hz, 2H, ArH), 7.38-7.34
(m, 3H, ArH), 7.30 (m, 1H, ArH), 7.25 (m, 1H, ArH), 6.42 (s,
1H, -CH-), 4.08 (q, J = 7.2 Hz, 2H, -CH2-), 2.29 (s, 3H,- CH3),
1.21 (t, J = 7.2 Hz, 3H, -CH3); LCMS (ESI): 385.79 (M+1).

Ethyl-2-methyl-4-(4-nitrophenyl)-4H-benzo[4,5]-
thiazolo[3,2-a]pyrimidine-3-carboxylate (4c): Brown solid;
m.p.: 169-171 °C; IR (KBr, νmax, cm-1): 1702, 1596, 1465, 1251,
746; 1H NMR (400 MHz, acetone-d6): δ = 8.22 (d, J = 8.2 Hz,
2H, ArH), 7.68 (dd, J = 8.0, 1.2 Hz, 1H, ArH), 7.60 (d, J =
8.2Hz, 2H, ArH), 7.38-7.35 (m, 2H, ArH), 7.19 (m, 1H, ArH),
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Scheme-I: Heteropolyacid catalysed MW assisted synthesis of pyrimidobenzothiazoles
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6.48 (s, 1H, -CH-), 4.08 (q, J = 7.2 Hz, 2H, -CH2-), 2.35 (s,
3H, -CH3), 1.22 (t, J = 7.2 Hz, 3H, -CH3); LCMS (ESI): 396.52
(M+1).

Ethyl-4-(4-methoxyphenyl)-2-methyl-4H-benzo[4,5]-
thiazolo[3,2-a]pyrimidine-3-carboxylate (4d): Yellow solid;
m.p.: 122-124 °C; IR (KBr, νmax, cm-1): 1691, 1590, 1465, 1250,
745; 1H NMR (400 MHz, acetone-d6): δ = 7.67 (dd, J = 8, 1.2
Hz, 1H, ArH), 7.56 (d, J = 7.6 Hz, 2H, ArH), 7.38 (dd, J =
7.6, 1.2 Hz, 1H, ArH), 7.31 (m, 1H, ArH), 7.15 (d, J = 7.6 Hz,
2H, ArH), 7.2 (m, 1H, ArH), 6.44 (s, 1H, -CH-), 4.10 (q, J =
7.2 Hz, 2H, -CH2-), 2.28 (s, 3H, -CH3), 3.72 (s, 3H, -CH3)
1.20 (t, J = 7.2 Hz, 3H, CH3); LCMS (ESI): 381.45 (M+1).

Ethyl-2-methyl-4-(3,4,5-trimethoxyphenyl)-4H-benzo-
[4,5]thiazolo[3,2-a]pyrimidine-3-carboxylate (4e): Yellow
solid; m.p.: 168-170 °C; IR (KBr, νmax, cm-1): 3098, 2982, 1690,
1581, 1495, 1272, 1238, 1201, 1077, 835, 739; 1H NMR (400
MHz, acetone-d6): δ = 7.60 (dd, J = 7.8, 1.2 Hz, 1H, ArH),
7.44 (dd, J = 7.8, 1.2 Hz, 1H, ArH), 7.28 (m, 1H, ArH), 7.14
(m, 1H, ArH), 6.43 (s, 2H, ArH), 6.30 (s, 1H, -CH-), 4.03 (q,
J = 6.8 Hz, 2H, -CH2-), 3.73 (s, 6H, -CH3), 3.70 (s, 3H, -CH3),
2.35 (s, 3H, -CH3), 1.18 (t, J = 6.8 Hz, 3H, -CH3); LCMS
(ESI): 441.61 (M+1).

Ethyl-4-(2,5-dimethoxyphenyl)-2-methyl-4H-benzo-
[4,5]thiazolo[3,2-a]pyrimidine-3-carboxylate (4f): Yellow
solid; m.p.: 162-164 °C; IR (KBr, νmax, cm-1): 3096, 2980, 1694,
1583, 1497, 1271, 1239, 1203, 1075, 836, 739; 1H NMR (400
MHz, acetone-d6): δ = 7.62 (dd, J = 7.8, 1.2 Hz, 1H, ArH),
7.45 (dd, J = 6.8, 1.2 Hz, 1H, ArH), 7.30 (m, 1H, ArH), 7.15
(m, 1H, ArH), 6.68 (s, 1H, ArH), 6.43-6.46 (m, 2H, ArH),
6.33 (s, 1H, -CH-), 4.05 (q, J = 6.6 Hz, 2H, -CH2-), 3.90 (s,
3H, -CH3), 3.68 (s, 3H, -CH3), 2.37 (s, 3H, -CH3), 1.20 (t, J =
6.6 Hz, 3H, -CH3); LCMS (ESI): 411.50 (M+1).

Ethyl-7-methyl-5-phenyl-5H-thiazolo[3,2-a]pyrimi-
dine-6-carboxylate (5a): Yellow solid; m.p.: 239-240 °C. IR
(KBr, νmax, cm-1): 3095, 2985, 1690, 1542, 1290; 1H NMR
(400 MHz, CDCl3) δ = 7.42 (m, 3H, ArH), 7.33 (m, 2H, ArH),
7.15 (d, J = 4.0 Hz, 1H, ArH), 7.02 (d, J = 4.0 Hz, 1H, ArH),
6.36 (s, 1H, -CH-), 4.09 (q, J = 7.2 Hz, 2H, -CH2--), 2.67 (s,
3H, -CH3), 1.20 (t, J = 7.2 Hz, 3H, -CH3); LCMS: 301.22 (M+1).

Ethyl-5-(4-chlorophenyl)-7-methyl-5H-thiazolo[3,2-
a]pyrimidine-6-carboxylate (5b): Light yellow solid; m.p.:
138-140 °C; IR (KBr, νmax, cm-1): 3070, 2981, 1692, 1570,
1320. 1H NMR (400 MHz, CDCl3) δ = 7.28 (d, J = 8.0 Hz,
2H, ArH), 7.26 (d, J = 8.0 Hz, 2H, ArH), 6.50 (d, J = 4.8 Hz,
1H, ArH), 6.30 (d, J = 4.8 Hz, 1H, ArH), 6.17 (s, 1H, CH),
4.05 (q, 2H, -CH2-), 2,42 (s, 3H, -CH3), 1.19 (t, J = 7.2 Hz,
3H, -CH3); LCMS: 335.90 (M+1).

Ethyl-5-(4-methoxyphenyl)-7-methyl-5H-thiazolo[3,2-
a]pyrimidine-6-carboxylate (5d): Yellow solid, m.p.: 133-
135 °C; IR (KBr, νmax, cm-1): 3110, 2984, 1687, 1572, 1312;
1H NMR (400 MHz, CDCl3) δ = 7.25 (d, J = 8.4 Hz, 2H,
ArH), 6.82 (d, J = 8.4 Hz, 2H, ArH), 6.58 (d, J = 4.8 Hz, 1H,
ArH), 6.25 (d, J = 4.8 Hz, 1H, ArH), 6.12 (s, 1H, -CH-), 4.04–
4.09 (m, 2H, -CH2-), 3.75 (s, 3H, -OCH3), 2.43 (s, 3H, -CH3),
1,18 (t, J = 7.2 Hz, 3H, -CH3); LCMS: 331.56 (M+1).

Ethyl-7-methyl-5-(3,4,5-trimethoxyphenyl)-5H-thia-
zolo[3,2-a]pyrimidine-6-carboxylate (5e): Yellow solid, m.p.:
152-154 °C; IR (KBr, νmax, cm-1): 3105, 2990, 1691, 1575,

1310; 1H NMR (400 MHz, CDCl3) δ = 7.36 (d, J = 4.8 Hz,
1H, ArH), 6.82 (d, J = 4.8 Hz, 1H, ArH), 6.49 (s, 2H, ArH),
6.08 (s, 1H, -CH-), 4.06 (q, J = 7.0 Hz, 2H, -CH2), 3.77 (s,
3H, -OCH3), 3.78 (s, 6H, -OCH3), 2.44 (s, 3H, -CH3), 1.16 (t,
J = 7.0 Hz, 3H, -CH3); LCMS: 391.35 (M+1).

Ethyl-7-methyl-5-(3,4,5-trimethoxyphenyl)-5H-thia-
zolo[3,2-a]pyrimidine-6-carboxylate (5f): Yellow solid, m.p.:
145-147 °C; IR (KBr, νmax, cm-1): 3101, 2989, 1690, 1578,
1300; 1H NMR (400 MHz, CDCl3) δ = 7.35 (d, J = 4.8 Hz,
1H, ArH), 7.02 (s, 2H, ArH), 6.77 (d, J = 4.8 Hz, 1H, ArH),
6.89 (s, 1H, ArH), 6.08 (s, 1H, -CH-), 4.05 (q, J = 7.2 Hz, 2H,
-CH2), 3.70 (s, 3H, -OCH3), 3.71 (s, 3H, -OCH3), 2.48 (s, 3H,
-CH3), 1.18 (t, J = 7.2 Hz, 3H, -CH3); LCMS: 361.53 (M+1).

R E S U L T S A N D   D I S C U S S I O N

In an initial endeavour our aim was directed towards the
one pot, multi-component reaction of benzaldehyde (1), ethyl
acetoacetate (2) and 2-amino benzthiazole (3a) under solvent-
free condition using different catalysts under microwaves irra-
diation to afford pyrimidobenzothiazoles (4a) and the results
obtained are illustrated in Table-1.

TABLE-1 
OPTIMIZATION OF CATALYSTS AND CATALYST LOADING 

Catalysta Catalyst loading 
(mol %) 

Time (min) Isolated  
yield (%) 

– – 15 No reaction 
Bi(OTf)3 10 15 55 
L-Proline 10 15 20 

FeCl3 10 15 30 
Acetic acid 10 15 Trace 

STA 10 15 96 
STA 5 15 96 
STA 2 15 92 

aReaction condition: Ethyl acetoacetate (1.0 mmol), benzaldehyde (1.0 
mmol) and 2-aminobenzimidazole (1.0 mmol) under MW irradiation at 
300 W. 

 
The results revealed that no product formation in the absence

of catalyst after 15 min of irradiation. On the other hand, the
use of catalysts such as bismuth triflate, FeCl3, L-proline and
acetic acid furnished the products to little extent. Use of
bismuth triflate afforded 55% yield, L-proline afforded 20%
yield, FeCl3 furnished 30% yield and acetic acid gave trace
quantity of the yield of product. However, it was found that
the use of silicotungstic acid (STA) as a catalyst afforded
excellent yield of the product compared to the bismuth triflate,
FeCl3, L-proline and acetic acid under microwave irradiation
and solvent-free condition. Further, we assessed the effect of
catalyst loading on the reaction conversion and it was observed
that 5 mol% catalyst is enough to drive the reaction towards
completion (95% yield). The use of 2 mol% of STA decreased
the conversion of product slightly (92%).

To study the generality of this protocol, we extended the
optimized protocol for the synthesis of pyrimidothiazoles (5a-
f) by replacing 2-amino benzthiazole with 2-amino thiazole.
This reaction also provided the excellent yield of product i.e.
pyrimidothiazoles (92%) under identical reaction conditions.

To study the scope for substrate, we further extended our
work with different aromatic aldehydes to prepare a series of
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pyrimidothiazoles (4a-f) and pyrimidobenzothiazoles (5a-f)
and the results are presented in Table-2. All the aromatic
aldehydes furnished the desired products in good to excellent
yields. All the synthesized compounds were characterized by
using IR and 1H NMR and mass spectral data.

TABLE-2 
STA CATALYZED MULTI-COMPONENT SYNTHESIS OF PYRIMIDOTHIAZOLES 

AND PYRIMIDOBENZOTHIAZOLES UNDER MW IRRADIATION 

Compound Structure Time (min) Colour Isolated yield (%) m.p. (°C) 

4a 

S

N

N

O

OEt
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S
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OEt

 

20 Brown 92 239-240 (240-241) [23] 

5b 

S

N

N

O

OEt

Cl

 

25 Yellow 94 138-140 (138-139) [24] 

 

The probable mechanism for the formation of product is
illustrated in Scheme-II. The Knoevenagel condensation of ethyl
acetoacetate (2) and benzaldehyde (1) leads to the formation of
Knoevenagel adduct which on Michael type addition followed
by the dehydrative cyclization afforded the desired product 4a.

[22]

[23]

[23]

[23]

[24]
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Conclusion

In conclusion, we have developed a simple heteropolyacid
(silicotungstic acid) catalyzed, one-pot, multi-component protocol
for the synthesis of pyrimidothiazoles and pyrimidobenzo-
thiazoles via condensation of ethyl acetoacetate, benzaldehyde
and 2-amino thiazole or 2-amino benzthiazole under solvent-
free condition using microwave irradiation. The advantages of
this method are solvent-free conditions, short reaction time, easy
purification, high yield and economic availability of the catalyst.
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Scheme-II: Probable mechanism for the formation of pyrimidobenzothiazoles
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