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I N T R O D U C T I O N

Reverse transcriptase (RT), a multifunctional enzyme,
shows biochemical activities namely RNA-dependent and DNA-
dependent DNA polymerases and ribonuclease H activities
[1,2]. Since reverse transcriptase from HIV-1 is one of the target
enzymes for best known anti-AIDS drugs, it has immense medical
attentiveness. The avian myeloblastosis virus (AMV) is generally
a type C oncogenic RNA virus and related with lymphomas
and leukemia [3]. It is well studied that an RNA-dependent DNA
polymerase-RT is present in AMV and hence, the investigation
of AMV-RT inhibitor as an important anti-tumor agent attracted
interests. HIV-1 RT as well as AMV-RT is, basically, hetero-
dimers consisting of two different monomer subunits [3,4].
Azidothymidine (AZT), an example of nucleoside HIV-1 RT
inhibitor used as an approved drug for HIV infection, also shows
encouraging activity of AMV-RT inhibition [5]. AMV-RT inhib-
itors, hence, may play an important role in the development
of potent anti-HIV drugs. Flavonoids are essentially secondary
metabolites and show several biological and pharmacological
activities with little toxicity [6]. Different biological items like
foods, flowers, plants, etc. are the natural sources of flavonoids.
Various biological activities of flavonoids as antioxidant, anti-
inflammatory, antimicrobial, anti-allergic, estrogenic and anti-
HIV activities have been studied [7-9]. Some natural flavo-

A set of 29 flavonoid molecules are used to generate comparative
molecular field analysis (CoMFA) and comparative molecular
similarity indices analysis (CoMSIA) models. The best CoMFA model
showed a cross-validated correlation coefficient (q2) = 0.762, non-
cross-validated correlation coefficient (r2) = 0.939, standard error of
estimate (S) = 0.038 and F = 396. And that for CoMSIA model were
q2 = 0.758, r2 = 0.957, S = 0.063 and F = 236. The models show a high
predictive ability, validated by 11 favonoid molecules. The docking
studies shows the hydrogen bonding interaction is mostly responsible
for binding of the flavonoids molecules in the binding pocket of HIV
1-RT protein (3HVT.pdb).
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noids are capable to inhibit different types of reverse transcriptase
from different sources [10]. Some naturally occurring flavonoids
exhibit inhibitory activities against AMV-RT [11]. To acquire
the flavonoids' structure-activity relationship (SAR) as a potential
RT inhibitor, three-dimensional quantitative structure-activity
relationship (3D-QSAR) methods were used. These methods
were comparative molecular field analysis (CoMFA) and
comparative molecular similarity index analysis (CoMSIA). The
most commonly employed CoMFA is based on the concept that
interactions between receptors and their ligands mainly have
non-covalent nature and are shape independent. Therefore, a
QSAR may be acquired by sampling electrostatic (Coulombic)
and steric (Lennard-Jones) fields surrounding a ligand set and
by correlating differences observed in these fields to the
biological activity. To derive the optimum possible QSAR
equation, the partial least squares (PLS) analysis together with
the cross-validation method was employed for selecting fitting
components from a substantial set of CoMFA data [12,13].

The CoMSIA method is the modified version of CoMFA.
The steric, hydrophobic, electrostatic and hydrogen bonding
properties are included in this method and it is less alignment-
dependent than CoMFA [14,15]. Property fields based on simi-
larity indices of molecules aligned commonly are computed
through CoMSIA approach. Gaussian-type distance dependence
potentials are employed in CoMSIA fields. The exponential depen-
dence from distance keeps away from the occurrence of singulari-
ties at the atomic positions. Partial least squares (PLS) analysis
is used to compute the fields. Furthermore, docking simulation
was executed with some selected flavonoids to verify whether
these flavonoids can show activity against HIV 1-RT or not.

E X P E R I M E N T A L

Biological data: Twenty-nine flavonoids with an AMV-
RT inhibition activity were acquired from literature [11] (Table-
1). The inhibition activity, that is, the concentration for the
50% of inhibition (IC50), was converted into log (IC50) and

TABLE-1 
MOLECULAR STRUCTURES OF FLAVONOID MOLECULES AND THEIR  

RADICAL SCAVENGING ACTIVITIES IN LOGARITHM SCALE 
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No Name R1 R2 R3 R4 R5 R6 R7 R8 IC50 pIC50 
1 Kaempferol OH OH OH H H H OH H 8.5 0.929 
2# Galangin OH OH OH H H H H H 9.8 0.991 
3 Quercetin OH OH OH H H OH OH H 12.2 1.086 
4 Kaempferol 3,7-dirh Orh OH Orh H H H OH H 15.4 1.188 
5# Robinetin OH H OH H H OH OH OH 17.6 1.246 
6 Fisetin OH H OH H H OH OH H 19.0 1.279 
7 3-hydroxyflavone OH H H H H H H H 21.3 1.328 
8# Laricytrin OH OH OH H H OH OH OMe 22.0 1.342 
9 Laricytrin 3’-O-glucoside OH OH OH H H Ogl OH OMe 23.3 1.367 
10 Myricetin OH OH OH H H OH OH OH 23.6 1.373 
11 3,5,7,3’,4’,5’ Hexameth. flavones OMe OMe OMe H H OMe OMe OMe 28.0 1.447 
12 Quercetin 3-O-glu-7-O-rha Ogl OH Orh H H OH OH H 31.3 1.496 
13# Rutin Oru OH OH H H OH OH H 32.7 1.515 
14 Morin OH OH OH H OH H OH H 34.9 1.543 
15 Flavone H H H H H H H H 36.9 1.567 
16 5-Hydroxyflavone H OH H H H H H H 40.5 1.607 
17# 7-Hydroxyflavone H H OH H H H H H 45.6 1.659 
18 Crysin H OH OH H H H H H 48.0 1.681 
19 8-Methoxyflavone H H OMe H H H H H 50.9 1.707 
20 Apigenin H OH OH H H H OH H 52.7 1.722 
21 Vitexin H OH OH Gl H H OH H 59.7 1.776 
22 Apigenin 7-O-glucoside H OH Ogl H H H OH H 64.6 1.810 
23 Luteolin 7-O-glucoside H OH Ogl H H OH OH H 68.1 1.833 
24 Flavanone H H H H H H H H 71.4 1.854 
25 Naringenin H OH OH H H H OH H 72.6 1.861 
26 Naringin H OH One H H H OH H 82.5 1.919 
27 Hesperetin H OH OH H H OH OMe H 85.1 1.930 
28 Fustin OH H OH H H OH OH H 87.5 1.942 
29 Taxifolin (dih) OH OH OH H H OH OH H 87.5 1.945 
# test set of molecules 
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was abbreviated as pIC50. The overall dataset was divided into
training (23 molecules) and testing (5 molecules) sets. The
training and testing set were used to produce a QSAR model
and to measure external predictivity, respectively.

For the establishment of 3D CoMSIA and CoMFA QSAR
models and all the calculations, Sybyl X molecular modeling
package [16] was employed. The structural energy of all the
29 molecules was minimized using the Tripos force field by
employing the Powell gradient algorithm having a convergence
criterion of 0.001 kcal mol-1. The Gasteiger-Hückel method
was used to calculate the partial atomic charges.

Molecular alignment: Molecular alignment is an impor-
tant step in the CoMFA and CoMSIA models development
[17]. In this process, the first step is selecting a template
molecule to be the molecule 29 exhibiting the highest anti-
HIV activity. Into a lattice box, the flavonoid molecules were
aligned by fitting with a common portion (napthoquinone
moiety) of all the molecules on the template molecule 29. Fig.
1 illustrates the aligned molecule sets.

CoMFA and CoMSIA setup: The CoMFA and CoMSIA
models play an important role in the investigation of quanti-
tative correlation between molecular structures and its response
properties. Separate CoMFA and CoMSIA models were built
for the data set of aligned molecules. By constructing a 3D
cubic lattice of grid spacing with 1 Å extending up to 4 Å

units beyond the aligned molecules in x, y and z directions,
the CoMFA and CoMSIA descriptor fields were derived. Tripos
force field was utilized to calculate the Van dar Waals and
Coulombic potentials.

In the CoMFA approach, an sp3-hybridized carbon atom
having a +1 charge was employed as a probe atom to produce
electrostatic and steric fields. Initially, for both electrostatic
and steric energies, a cut off value of 30 kcal/mol was selected.

The CoMSIA approach was acquired using the lattice box
employed for the CoMFA method. In the CoMSIA approach,
five physico-chemical properties were evaluated. These prop-
erties were electrostatic, steric, hydrophobic, hydrogen bond
acceptor and hydrogen bond donor. For this evaluation, a
common probe atom having a 1 Å radius, +1 hydrophobicity,
+1 charge and both hydrogen bond properties +1 was used.
To calculate the similarity indices, dependence of the Gaussian
type distance was employed between the probe and atoms of
the aligned molecules. The default attenuation factor value
was set at 0.3.

Model derivation and validation: The partial least squares
(PLS) analysis was used to construct the 3D QSAR models.
This analysis is an extension of the multiple regression analysis,
where CoMSIA and CoMFA fields and pIC50 values were treated
as independent and dependent variables, respectively. For cross-
validation, the leave-one-out (LOO) method, where one mole-

Fig. 1. Molecules have been aligned over the template molecule 29. The common moiety is one of the phenyl groups marked circled
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cule was isolated from the sample data, was employed. To predict
the activity of the separated molecules, the model acquired from
the residual dataset was employed. PLS was analyzed through
cross-validation to determine the optimum number of compo-
nents (ONC). The final non-cross-validated CoMSIA and CoMFA
models were developed using the ONC. The number of compo-
nents that led to the highest coefficient of the cross-validated
correlation (rcv

2 or q2) was considered as the ONC. To enhance
efficiency and minimize noise, the employed column filtering
was set to 2 kcal/mol. The optimum models were acquired by
using the non-cross-validated analyses together with ONC,
which provided the correlation coefficient r2. To estimate predi-
ctive abilities, a test set of seven molecules that were excluded
from the training set and aligned to the template was used. The
coefficient of the predictive correlation (r2

pred) was calculated
by using an equation provided in the literature [18,19]. For a
reliable model, r2

pred should be greater than 0.5 [20].
Docking study: The protein-ligand interactions were

studied by selecting the molecule 29 as a reference molecule
and it was docked into the active site of the HIV-1 RT (pdb code
3HVT) [21] with the aid of Surflex-Dock module of Tripos
Inc. [17]. The X-ray crystal structures of HIV-1 RT (pdb code
3HVT) were collected from the Brookhaven Protein Data Bank
(http://www.rcsb.org/pdb). An empirically scoring function
was used in Surflex-Dock module [22,23]. For docking the
ligands into the active site of the receptor, a licensed search
engine was also used in the module. In the docking experiment,
protein structure without energy minimization was utilized.
By removing all the ligands and water molecules present in the
receptor protein, polar hydrogen atoms were added. Protomol,
an idealized charaterization of a ligand which is responsible
for potential interaction with the receptor, was used to steer
the molecular docking. Protomol is generated by ‘automatic’
option in Surflex-Dock that finds the biggest cavity in the
receptor protein. The scoring function was tuned to estimate
the binding affinities and the Surflex-Dock scores were expre-
ssed in the units of –log10(Kd)2. The full scoring function is the
sum of hydrophobic complementarity, repulsive complemen-
tarity, entropic and solvation terms. The various individual

scoring functions was also combined to set up a consensus
scoring function which is more robust in computing the inter-
actions between ligand and receptor. Consensus score (CScore)
[24] usually adds up different number of scoring functions to
rank of binding affinity of the ligands, which are bound to the
receptor’s active site. The expected protein-ligand binding mode
was visualized by using the Molecular Computer Aided Design
(MOLCAD) program which was implemented in SYBYL-X
[16].

R E S U L T S A N D   D I S C U S S I O N

The best optimal CoMFA model employing steric and
electrostatic fields was acquired with the ONC of 5 and cross-
validated correlation coefficient (q2) of 0.762.  The non-cross-
validated PLS analysis indicated a high correlation coefficient
(r2), good F value and low standard error estimate (S) of 0.952,
396 and 0.038, respectively. The contributions of steric and
electrostatic and steric fields were found to be 0.640 and 0.360,
respectively. Fig. 2 illustrates the correlation between the actual
activities and the predicted activities of the training set and test
sets.

In the CoMSIA model, various combinations of five
CoMSIA fields were used to investigate the significance and
predictivity. The optimal model was acquired using the
hydrogen bond donor and electrostatic fields, which provided
a q2 and high non-cross-validated r2 values of 0.758, and 0.957,
respectively, with a low S and F values of 0.063 and 236,
respectively. In this model, the hydrogen bond donor and
electrostatic fields are found to contribute 0.657 and 0.343,
respectively of the total field. Fig. 2 shows the relationship
between the actual and the predicted pIC50 values both for the
test and training sets for the CoMSIA model.

The external validations of CoMFA (r2
pred = 0.723) and

CoMSIA (r2
pred = 0.693) models revealed a reliable and high

predictive capacity of the new molecules.
Interpretation of 3D contour maps: Fig. 3a and Fig. 3b

show the contour maps of the CoMFA steric and electrostatic
fields, respectively, obtained from the final optimum non-cross-
validated analysis. These maps revealed the zones in 3D space
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Fig. 2. Graph of actual versus predicted pIC50 of the training set and the test set using (a) CoMFA model and (b) CoMSIA model
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available in the peripheral region of the aligned molecules, where
changes in the steric and electrostatic fields would favour or
disfavour the activity. For steric field, the CoMFA contour maps
are shown by green and yellow contours. In the green and
yellow regions, bulky and less bulky groups, respectively, are
favourable, and the activity would decreases. It is evident from
Fig. 3a that the prominent yellow contours are situated around
the substituents R1, R2, R3 and R7, which indicated that non-
bulky substituents are preferred at these positions.

On the other hand, blue contours around the substituent
R3, R1 and R8 are noticed due to the contribution of CoMFA
electrostatic fields (Fig. 3a). At the same time, red contours
are observed around the substituents R1 and R5. The blue contours
implies more positive charge around R3, R1 and R8 whereas
the red contours around R1 and R5 indicate more negative charge
which will increase the bio-activity. The blue contours are observed

(a) (b) 

(c) 
(d)

Fig. 3. (a) CoMFA contour maps for steric field, (b) CoMFA contour maps for electrostatic field, (c) CoMSIA contour maps for electrostatic
field and (d) CoMSIA contour maps for hydrogen bond donor field, with highly active molecule 29, respectively

to be crowded over pyrone ring in the CoMSIA electrostatic
map (Fig. 3c), which suggests the presence of more positive
charge will increase the activity. The red contours are found
to be located near R1 which imply concentration of negative
charge at this position will escalate the activity. In the CoMSIA
hydrogen bond donor field (Fig. 3d), very distinct purple con-
tours near R1, R2, R3, R7 and R8 are observed which signifies
that the hydrogen bond donor functionalities such as –OH or
–NH2 in these areas would boost the activity. This is in agree-
ment with very high contribution (64.3%) of hydrogen bond
donor. These observations are in fair agreement with experi-
mental activity data of the set of molecules chosen. Molecule
14 (Morin) is most active having –OH donor group at R1, R2,
R3, R5 and R7 positions whereas molecule 1 (Kempferol) is
second highest active having –OH donor groups at R1, R2, R3

and R7 positions.
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Docking study: Few flavonoids having the highest, inter-
mediary, and lowest activities against AMV-RT were identified.
These flavonoids were docked with HIV-RT. The most active
AMV-RT inhibitor, compound 29, was docked to HIV-1 RT.
The 40-OH, 5-OH, and 6-OH of scutellarein formed hydrogen
bonds with the NH and carbonyl groups of Ile180; OH of
Tyr319 and carbonyl group of His235; and NH of His235,
respectively (Fig. 4). The binding interactions between HIV-
RT and scutellarein were correlated with the flavonoid SAR
as an AMV-RT inhibitor. For AMV-RT inhibition, two to three
hydroxyl groups must be present in the vicinity of an aromatic
ring. Compounds 20-29, containing 6-OH, provide effective
inhibition against AMV-RT (>90% inhibition) and exhibit
powerful binding to HIV 1-RT.

ILE 180

2.181

2.456

TYR 188

3.603
3.678

2.536

TYR 319

HIS 235

Fig. 4. Hydrogen bond interaction of flavonoid 29 with HIV-RT(3HVT)
protein

For the inhibition activity, the substituents of hydrogen
bonding are more responsible than other (electrostatic, steric,
or hydrophobic) substituents. The findings of docking study
indicated that the highly active AMV-RT inhibitors of flavonoid
series having 6-OH structures can serve as potential HIV-1
RT inhibitors.

Conclusion

Reliable 3D-QSAR models implementing CoMFA and
CoMSIA methods have been built for a set of 29 flavonoids.
Molecules 1 and 14 have the maximum number of hydrogen
bond donor positions exhibit higher activities. This is consistent
with the results found with the CoMSIA method. It, therefore,
can be posited principally that superior hydrogen bond donor
groups at positions R1, R2, R3, R5 and R7 is desired for superior
radical scavenging activity of flavonoids. It is predictable both
from the CoMFA and CoMSIA that electron withdrawing groups

at position R1 is preferable for higher radical scavenging activity.
The present way of analysis by 3D-QSAR of the set of flavo-
noids selected will play an important role for finding out of
better antioxidants. The docking analysis reveals the insight
that hydrogen bonding and CH···π interaction happens in this
type of molecules for docking with the HIV-RT protein (3HVT).
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