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I N T R O D U C T I O N

Glycosylation of alcohols with glycal and bromo sugar is
a fascinating area of research. In general, this reaction requires
catalyst to activate the alkene bond in glycal and the bromo
group present in sugar derivatives. Our research on glyco-
sylation of alcohols is proved to be highly important in diverse
areas. Specifically, molecular iodine-catalyzed reaction of
racemic and optically active 3-hydroxy β-lactams with glycal
is described [1-7]. In addition, indium metal is found to be an
excellent promoter in the stereospecific glycosylation of bromo
sugar with different alcohols [8-12]. It is important to mention
that molecular iodine-catalyzed reactions afford α-glycosides
as the only products. In contrast, indium-induced reactions
produce β-glycosides as the only products. Therefore, we have
access of several medicinally important α-and β-glycosides
through simple but mechanistically unique methods. In
this communication, efficient stereoselective glycosylation β-
citronellol by molecular iodine- and indium salts-catalyzed
reactions is described [13-36]. The possible mechanistic routes
of these methods are also advanced.

R E S U L T S A N D   D I S C U S S I O N

Following our research on β-lactams and to connect
glycosylation on our current research, this study described
herein was undertaken [37-43]. Reaction of glycal 1a with
β-citronellol 2 in the presence of molecular iodine produced
α-glycoside 3a as the major isomer in 70-80 % yield (Scheme-I
and Table-1). The presence of the other isomer 3b was detected.
An identical reaction between 1b and 2 failed to produce any
glycosides 4a or 4b. The only differences between 1a and 1b
were the nature of the protective groups present in these two
molecules.

Stereoselective synthesis of terpene alcohol, β-citronellol is achieved
in excellent yield by molecular iodine- and indium salts-catalyzed
reactions with protected glycal and protected bromo sugar derivatives.

A B S T R A C T



Reaction of bromosugars 5a and 5b with 2 in the presence
of indium bromide produced predominantly β-glycosides 7a
and 7b regardless of the nature of the protective groups in the
presence of in the sugar derivative (Scheme-II and Table-2).
The yield of the product 7b with 5b was poor and this reaction

was non-stereoselective: an identical ratio of α- and β-glyco-
sides were formed.

The anomeric oxygen in the sugar unit was capable of
expel bromine (halogen) of the bromo sugar derivative in the
presence of activator (Lewis acid) (Scheme-III). Indium was
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Scheme-I: Iodine catalyzed O-glycosylation of D-glucal derivatives with terpene alcohol

TABLE-1 

Entry Glycosyl donar Glycosyl 
accepter 

Activator/ 
promoters 

Solvent(s) Time (h) Yielda (%) a:bb ratio 

1 1a 2 I2 CH2Cl2 1.5 70-80 8:2 
2 1b 2 I2 CH2Cl2 5 Trace – 

aIsolated yield after column chromatography purification. bAnomeric ratio determined by the 1H NMR spectroscopy of the crude reaction mixture. 
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Scheme-II: Indium salt catalyzed O-glycosylation of bromo_D-glucose derivatives with terpene alcohol

TABLE-2 

Entry Glycosyl donar Glycosyl 
accepter 

Activator/ 
promoters 

Solvent(s) Time (h) Yielda (%) a:bb ratio 

1 5a 2 InBr3 CH2Cl2 1 80 1:9 
2 5b 2 InBr3 CH2Cl2 3 60 1:1 

aIsolated yield after column chromatography purification; bAnomeric ratio determined by the 1H NMR spectroscopy of the crude reaction mixture. 
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Scheme-III: General mechanism of glycosylation of β-halosugar
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the activator in this reaction. This process resulted in the gene-
ration of highly reactive oxenium ion. A nucleophilic attack
to this oxenium ion was possible to obtain a mixture of glyco-
sides. Because of the higher stability of the β-glycoside, this
isomer became the major product. This mechanism was further
strengthened by the fact that the acetoxy protecting group
produces the major compound as β-isomer compared to benzyl
ether (Scheme-IV). A 3-acetoxy group was helpful to form
cyclic carbocation species with the anomeric carbon through
a neighboring group participation act mechanism. Such neigh-
bouring group participation was not possible with the benzyl
ether. At the end, a nucleophilic attack by the alcohol through
route “a” produced the β-isomer which has the trans 1, 2
system. An attached through route “b” produced the cis
α-isomer.

The products formation through molecular iodine-
catalyzed reaction was explained in Scheme-V. The glycal in
the presence of iodine as promoter formed the oxo-carbenium
species through a displacement of the substituent present in
C-3-position. An attack by the alcohol following route “a”
produced α-isomer as the main product because this is the most
stable isomer. An attack following route “b” was also possible
to obtain β-glycoside. However, this route was less favourable
because of the serious interaction of the non-bonded electrons
that are present in the anomaric oxygen and the nucleophile.
Moreover, because of the weak leaving group properties of
the benzyl group present at C-3-position in glycal, it was
obvious that the reaction becomes slow (or impossible to occur)
with 1b.
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Scheme-IV: Mechanism of neighbouring participation. A route for the synthesis of 1,2-cis (α) and 1,2-trans(β) anomer
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Scheme-V: Mechanism of ferrier type of O-glycosylation of tri-O-acetyl-D-Glucal. An α-anomeric selectivity

Conclusion

A facile and excellent method is developed for the stereo-
selective synthesis of oxygen glycosides of β-citronellol. The
resulting products are highly functionalized and therefore, nume-
rous useful chemical transformations can be performed for
the preparation of complex organic molecules with complete
stereochemistry control. Further, this method can be applied
to several other natural products that have diverse function-
alities in their structures.
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