Asian Journal of Chemistry; Vol. 24, No. 12 (2012), 5619-5621 # ASIAN JOURNAL OF CHEMISTRY www.asianjournalofchemistry.co.in # Study on Some Hydroxyaryltellurium(IV) Trichlorides Catalyzed Knoevenagel Reactions† SAPANA GARG, RIMPI, J.K. NARWAL and K.K. VERMA* Department of Chemistry, Maharshi Dayanand University, Rohtak-124 001, India *Corresponding author: E-mail: vermakk123@rediffmail.com AJC-11710 Hydroxyaryltellurium trichlorides, R'TeCl₃ (p-hydroxyphenyl and 3-methyl-4-hydroxyphenyl) have been prepared by condensation of tellurium tetrachloride with phenol or o-cresol respectively. These hydroxyaryltellurium trichlorides have been investigated as catalysts in Knoevenagel reactions between non-enolizable aldehydes and active methylene compounds to yield the corresponding olefinic products. This paper reports the reaction of ethylcyanoacetate,malononitrile and cyanoacetamide with aromatic aldehydes, ArCHO (Ar is C_6H_5 , 4- ClC_6H_4 , 4- $CH_3OC_6H_4$ and C_6H_5 -CH=CH). The products are obtained in excellent yield and high purity and have been identified by comparison of their properties with those of authentic samples. Key Words: p-Hydroxyaryltellurium trichlorides, Knoevenagel condensation, Non-enolizable aldehyde, Active methylene compounds. # INTRODUCTION Knoevenagel condensation is now a very well established method¹ for the synthesis of substituted alkenes and is of importance because of its use in various synthetic transformations. The reaction is usually carried out in the presence of a base with non-enolisable aldehydes and ketones. It may be carried out either in homogeneous or heterogenous phase. The usual catalysts² are ammonia and ammonium salts, primary and secondary amines and their salts. Subsequently the use of TiCl₄ and base³, aluminium oxide⁴, AlPO₄-Al₂O₃⁵ and doped xonotlite⁶ have been reported. Silica gel functionalized with amine groups has been used under heterogenous catalysis conditions⁷. However, Lehnert's modification³ of this method requires the equivalent of TiCl₄ and base, which severely limits the scope of this method in large scale preparations. Tellurium and its compounds in recent years have attracted considerable interest in the field of organic synthesis8-11. Khan et al.12 reported some tellurium tetrachloride catalyzed knoevenagel reactions. p-Anisyltellurium trichloride¹³ has been recently investigated as an efficient catalyst in knoevenagel condensation. Here we report the use of hydroxyaryltellurium trichlorides as catalysts in similar reactions. ## **EXPERIMENTAL** All products are known compounds and were characterized by melting points, IR and ¹H NMR spetral studies. ¹H NMR spetra were recorded on a Bruker AVANCE II-400 MHz NMR spetro-meter using TMS as internal standard (CDCl₃ solution). IR spetra were recorded from KBr disk on FT-IR Bruker Tensor 27. TLC plates of Silica Gel-G were used to monitor the reaction. All products were identified by comparison of their properties^{14,15} with those of authentic samples. Preparation of *p*-hydroxyphenyltellurium trichloride¹⁶: Phenol (10 g, 106.4 mmol) and TeCl₄ (7.5 g, 27.8 mmol) in CCl₄ (150 mL) were refluxed in an atmosphere of dry N₂ for about 12 h until evolution of HCl ceased. The amount of HCl evolved corresponded to the loss of one equivalent of chlorine atom per mole of TeCl₄. The product was filtered, washed thoroughly with CCl₄ to remove excess of phenol and then with benzene to remove any unreacted TeCl₄. It was recrystallized from acetonitrile to give a yellowish green solid. **Preparation of 3-methyl-4-hydroxyphenyltellurium trichloride**¹⁷: TeCl₄ (5.0 g, 18 mmol) and o-cresol (4.0 g, 37 mmol) in 100 mL of CCl₄ were refluxed on a water bath under an atmosphere of dry N_2 for about 12 h until the evolution HCl ceased. The amount of HCl liberated corresponded to the loss of one equivalent of chlorine atom per mole of TeCl₄. The product was filtered and washed thoroughly with CCl₄ and benzene to remove excess of o-cresol and TeCl₄, respectively. It was recrystallized from acetonitrile to give a yellow solid product. **Knoevenagel condensation:** A mixture of carbonyl compound (**I**) (0.01 mol), the active methylene compound (**II**) (0.01 mol) and p-hydroxyaryltellurium(**IV**) trichloride (0.001 mol) was thoroughly mixed at room temerature. After being 5620 Garg et al. Asian J. Chem. | TABLE-1 | |--| | REACTION TIME, MELTING POINT AND YIELD OF THE PRODUCT (III) IN KNOEVENAGEL | | CONDENSATIONS OF (I) AND (II) IN THE ABSENCE OF SOLVENT | | S. No. | Ar | R | R = p-hydroxyphenyl | | R'=3-methyl-4-hydroxy phenyl | | Melting point | |--------|---|-------------------|----------------------------------|------------------------|----------------------------------|------------------------|---------------| | | | | Reaction time ^a (min) | Yield ^b (%) | Reaction time ^a (min) | Yield ^b (%) | (°C) | | 1. | C ₆ H ₅ | CONH ₂ | 60 | 78 | 58 | 70 | 75-78 | | 2. | 4-Cl-C ₆ H ₄ | CONH ₂ | 28 | 70 | 20 | 80 | 155-15 | | 3. | C_6H_5 | CN | 32 | 79 | 60 | 75 | 80-83 | | 4. | 4-Cl-C ₆ H ₄ | CN | 28 | 70 | 45 | 88 | 166-167 | | 5. | 4-CH ₃ O-C ₆ H ₄ | CN | 50 | 80 | 106 | 78 | 110-113 | | 6. | (E) - C_6H_5 - CH = CH | CN | 90 | 72 | 125 | 78 | 115-116 | | 7. | C_6H_5 | COOEt | 85 | 78 | 90 | 70 | 45-48 | | 8. | 4-Cl-C ₆ H ₄ | COOEt | 58 | 75 | 55 | 72 | 89-92 | | 9. | 4-CH3O-C6H4 | COOEt | 90 | 78 | 105 | 78 | 85-86 | a: Monitored by complete disappearance of starting material using TLC; b: Yields are of pure isolated product. All the products identified by comparison of their melting point¹³, IR¹⁴ and NMR¹³ spectra with those of authentic samples stirred for 5 min, the mixture was heated and continuousely stirred at 90-100 °C at a magnetic stirrer with hot plate for specific time (Table-1). The reaction was cooled at room temperature and treated with a solution of 1 % aqueous ethyl alcohol. The product was extracted with methylene chloride, washed with water. After drying over anhydrous Na₂SO₄, the solvent was evaporated to obtain the product(III) in high purity. #### Physical data (E)-2-cyano-3-phenyl propenamide (1): 1 H NMR: δ 8.20 (s, IH, H-olefinic), 7.87-7.97 (m, 2H, PhH), 7.27-7.58 (m, 3H, PhH), 6.88 (bs, 1H, NHCO), 6.62 (bs, 1H, NHCO). IR (KBr, v_{max} , cm⁻¹): 3399, 3164, 2218, 1692, 1597, 1573, 1370 and 684. (E) -2-cyano-3-(4-chlorophenyl)-2-propenamide (2): ^1H NMR: δ 8.19 (s, IH, H-olefinic), 7.89-7.97 (m, 2H, PhH), 7.63 (bs, 1H, NHCO), 7.40-7.82 (m, 2H, PhH), 7.05 (bs, 1H, NHCO). IR (KBr, ν_{max} , cm⁻¹): 3455, 3153, 2211, 1702, 1600, 1586, 1380, 1092, 852. **2-(Phenylmethylene)malononitrile (3):** ¹H NMR: δ 7.86-7.98 (m, 2H, PhH), 7.79 (s, 1H, H-olefinic), 7.29-7.63 (m, 3H, PhH). IR (KBr, ν_{max} , cm⁻¹): 3184, 2222, 1592, 1693, 1383, 754, 679. **2-[(4-Chlorophenyl)methylene]malononitrile (4):** ¹H NMR: δ 8.19 (s, 1H, H-olefinic), 7.90-7.97 (m, 2H, PhH), 7.40-7.50 (m, 2H, PhH). IR (KBr, ν_{max}, cm⁻¹): 3154, 2211, 1601, 1587, 1486, 1381, 1092, 825. **2-[(4-Methoxypheyl)methylene]malononitrile(5):** 1 H NMR: δ 7.81-7.97 (m, 2H, PhH), 7.65 (s, 1H, H-Olefinic), 6.86-7.02 (m, 2H, PhH), 3.88 (s, 3H, OCH₃). IR (KBr, ν_{max} , cm⁻¹): 3100, 2924, 2851, 2223, 1605, 1571, 1511, 1278, 1180, 833. **2-[(E)-3-phenyl-2-propenylidene]malononitrile (6):** 1 H NMR: δ 8.50 (d,1H H-olefinic), 7.50-7.80 (m, 2H, PhH), 7.30-7.49 (m, 2H, H-olefinic), 7.12-7.21 (m, 3H, PhH). IR (KBr, ν_{max} , cm $^{-1}$): 3029, 3057, 2223, 1671, 1577, 1607, 699, 752. Ethyl (E)-2-cyano-3-phenyl-2-propenoate (7): ¹H NMR: δ 8.25 (s, 1H, H-Olefinic), 7.97-7.99 (t, 2H, PhH), 7.47-7.57 (m, 3H, PhH), 4.35-4.40 (q, 2H, CH₂CH₃), 1.37-1.41 (t, 3H, CH₂CH₃). IR (KBr, ν_{max}, cm⁻¹): 3064, 3030, 2981, 2939, 2224, 1724, 1606, 1574, 1449, 1264, 1204, 1091, 768, 686. **Ethyl** (**E**)-**2**-cyano-**3**-(**4**-chlorophenyl)-**2**-propenoate (**8**): ¹H NMR: δ 8.25 (s, 1H, H-olefinic), 7.97-7.99 (t, 2H, PhH) 7.47-7.57 (m, 3H, PhH), 4.38-4.40 (q, 2H, CH₂CH₃), 1.37-1.41 (t, 3H, CH₂CH₃). IR (KBr, v_{max}, cm⁻¹): 3036, 2989, 2925 2854, 2211, 1723, 1612, 1589, 1491, 1262, 1199, 1080, 832. Ethyl (E)-2-cyano-3-(4-methoxyphenyl)-2-propenoate (9): 1 H NMR: δ 8.16 (s, 1H, H-olefinic), 7.98-8.00 (m, 2H, PhH), 6.97-6.99 (m, 2H, PhH), 4.33-4.38 (q, 2H, CH₂CH₃), 3.82 (s, 3H, OCH₃), 1.36-1.40 (t, 3H, CH₂CH₃). IR (KBr, ν_{max} , cm⁻¹): 3194, 3073, 2980, 2937, 2841, 2221, 1716, 1591, 1566, 1512, 1463, 1263, 1175, 1090, 834. ### RESULTS AND DISCUSSION Developments of new synthetic reactions utilizing characteristics of tellurium and its compounds has recently attracted much attention $^{8-11}$. Tellurium(IV) chloride and p-methoxyphenyltellurium trichloride have been exploited as a catalyst 12,13 in Knoevenagel reaction. The potential of p-hydroxyaryltellurium(IV) trichlorides as catalyst in this reaction has not been reported so far. $$Ar H H III III III$$ where, Ar is C_6H_5 , 4-Cl- C_6H_4 , 4-CH₃O- C_6H_4 , (E)- C_6H_5 -CH=CH, R is CN, CONH₂, COO Et and R' is *p*-hydroxyphenyl, 3-methyl-4-hydroxyphenyl. While exploring alternative methods for conversion I + II = III we discovered that *p*-hydroxyaryltellurium(IV) trichloride efficiently catalyses the reaction in a matter of minutes to produce olefinic product in high yields and good purity. The results of the reactions of ethyl cyanoacetate, malononitrile and cyanoacetamide with a variety of aromatic aldehydes have been described. These proceeded smoothly without solvent in the presence of a catalytic amount of *p*-hydroxyaryltellurium (IV) trichloride (Table-1). Only (E) isomers were produced. However, the yields of productes are low and reaction times are more as compared to TeCl₄ catalyzed¹² knoevenagel condensation reactions. The catalytic activity of these hydroxyaryltellurium trichlorides is more than that of anisyltellurium trichloride. #### Conclusion The *p*-hydroxyphenyltellurium been trichloride and 3-methyl-4-hydroxy tellurium trichloride have been prepared from phenol and *o*-cresol, respectively. These have been investigated as efficient catalyst in Knoevenagel condensation between non-enolizable aldehydes and active methylene compounds to yields the corresponding olefinic products in excellent yields and high purity. # **ACKNOWLEDGEMENTS** The authors are thankful to M.D. University, Rohtak for providing the necessary facilities. One of the authors (Rimpi) is thankful to CSIR, New Delhi for providing JRF. #### **REFERENCES** L.T. Jietze and U. Beifuss, in eds.: B.M. Trost and I. Fleming, Comprehensive Inorganic Synthesis; Selectivity, Strategy and Efficiency in Modern Organic Chemistry', Pergamon Press, Oxford, Vol. 2, pp. 341-394 (1991). - a) G. Jones, Organic Reactions Wiley, New York, Vol. 15, p. 204 (1967); b) S. Patai and Y. Isvaely, *J. Chem. Soc.*, 2020 (1960). - 3. W. Lehnert, Tetrahedron Lett., 4723 (1970). - 4. F. Texier-Boullet and A. Foucaud, *Tetrahedron Lett.*, **23**, 4927 (1982). - J.A. Cabello, J.M. Campelo, A. Garcia, D. Luna and J.M. Marinas, J. Org. Chem., 49, 5195 (1984). - 6. S. Chalais, P. Laszlo and A. Mathy, Tetrahedron Lett., 26, 4453 (1985). - I. Angeletti, C. Canepa, G. Martinetti and P. Venturello, *Tetrahedron Lett.*, 29, 2261 (1988). - N. Petragnani and H.A. Stefani, Tellurium in Organic Synthesis, Acdemic Press London (2007). - 9. N. Petragnani and J.V. Comasseto, Synthesis, 1 (1986). - 10. N. Petragnani and J.V. Comasseto, Synthesis, 793 (1991). - 11. N. Petragnani and J.V. Comasseto, Synthesis, 897 (1991). - 12. R.H. Khan, R.K. Mathur and A.C. Ghosh, Synth. Commun., 26, 683 (1996). - 13. Rimpi, S. Garg and K.K. Verma, Der. Pharma. Chemica, 3, 632 (2011). - a) M. Curini, F. Epifano, M.-C. Marcotullio, O. Rosati and J. Tsdjout, *Synth. Commun.*, 32, 355 (2002); b) C. Mukhopadhyay and A. Datta, *Synth. Commun.*, 38, 2103 (2008). - 15. M. Vijender, P. Kishore and B. Satyanarayana, ARKIVOC, 122 (2008). - 16. B.L. Khandelwal, K. Kumar and F.J. Berry, Inorg. Chim. Acta, 47, 399 (1981). - 17. B.L. Khandelwal, K. Kumar and K. Raina, Synth. React. Inorg. Met.-Org. Chem., 11, 65 (1981).