
INTRODUCTION

Study of the surface properties is fueled by the develop-

ment of nanotechnology. Surface tension is a characteristic

property of fluids. In this paper we give a method for the surface

tension determination of nanoscale liquid threads. The research

on liquid threads has attracted people’s attention for many

years. It is important for many areas of applied science and

technology, such as chemical engineering, coating, adsorption,

adhesion and environmental protection1-3.

There are many studies on surface tension. Early studies

were based on mechanics models and thermodynamic argu-

ments. The statistical mechanics provides the more powerful

methods. These methods usually employ the pressure tensor

from statistical mechanics to evaluate the surface tension. The

pressure tensor is not uniquely defined by the microscopic

laws embodying the conservation of momentum and angular

momentum. The variety of pressure tensor definition brings

forward the nonuniqueness of surface tension and some other

physical quantity for curved interface4,5. It is meaningful if we

give a method that can determine the surface tension without

use of pressure tensor.

On the basis of Gibbs theory6, we give a method that can

determine the surface tension of nanoscale liquid threads

without use of pressure tensors. In this paper nanoscale liquid

threads are the subject of investigation. A derivation of the

surface tension calculation is given. Then we carry out

molecular dynamics simulations to adopt the scheme.

EXPERIMENTAL

Theoretical basis and calculation scheme: Consider the

equimolar surface, there is
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ne = 0 (1)

and Fe = Ue – TSe = γeAe (2)

where the subscript e indicate the equimolar surface and ne is

the number of molecules per unit area of the equimolar surface,

Ue, Fe, Se γe and Ae denote the surface energy, surface free

energy, surface entropy, surface tension and the area of the

equimolar surface, T is the temperature of the system.

Eqn. 2 gives
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Considering the work of curvature change, we have 6
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where R denotes the radius of dividing surface, the differential

in square bracket denotes change in function that follows from

a notional change in the position of the dividing surface and

Re denotes the radius of the equimolar surface and is determined

by the equation
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where N, V, ρl, ρν and L are the total number of molecules,

total volume of the system, density of the interior of the liquid

and that of the interior of the vapour, the length of the liquid

thread, respectively.

Substituting eqn. 3  into 4 we obtain
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where γe(T, Re) can also be expressed by γ(T, Re). Eqn. 6 indi-

cates that the differential of surface tension dγe(T, Re) depends
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on the two variables (T, Re) and their differentials (dT, dRe).

The differential  expressed by eqn. 6 is a total differential. The

integral
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must be determined by the origin point and end point and be

independent of the path.

There are two different paths, i.e. restrictive conditions in

the TRe plane

Re = Re(T) (8)

and T = T0 (9)

where Re(T) and T0 may be appointed arbitrarily.

In this paper we discuss the surface tension determi-

nation under the restrictive conditions Re = Re(T). Then the

surface tension γe and entropy Se depend only on one variable

T and can be expressed as γe(T) = γe(T, Re(T)) = γ(T, Re(T) and

Se(T) = Se(T, Re(T)). Eqn. 6 becomes the monadic differential

form
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From eqns. 2 and 10, we have
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where εe is the energy per unit area of the equimolar surface.

Eqn. 10 with the general Laplace equation7
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where pl and pv are the pressures in the interior of the liquid

and in the interior of the vapour, respectively.

For a nanoscale liquid thread, if we have a function Re(T)

arbitrarily and know the functions εe(T) = εe(T, Re(T)) and

∆p(T) = ∆p(T, Re(T)), then eqn. 13 is a first-order ordinary

differential equation for function γe(T) = γe(T, Re(T)). The

solution of eqn. 13 is

γe(T) = γe(T, Re(T))
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Formula (14) permits us to calculate function γe(T) = γe(T,

Re(T)) in any given interval (T0, T1; T0 ≠ T1) for a given single

component liquid and a given function Re(T) in interval (T0,

T1), if the value γe(T0) is known and functions ∆p(t) and  εe(T)

in interval (T0, T1) are also known. In fact, the γe(T0) can be

obtained through experimental measurement or by calculation

with use of the molecular dynamics simulation results of

pressure tensors in the transition layer. The function can be

calculated by molecular dynamics simulation in the interiors

of the liquid threads and the vapour and the function
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can be calculated by molecular dynamics simulation with eqn.

5, where E, εl and εv are the total energy, energy density of the

interior of the liquid and that of the interior of the vapour,

respectively. And so we need not use the pressure tensor in

surface layer. Besides, to calculate E, εl and εv in eqn. 15, we

must use the energy of a molecule

2

U

2

m
E

2
m +ν= (16)

where m, ν and U are molecular mass, molecular speed and

inter-molecule potential, respectively.

Now we show how to obtain an initial value γe0 = γ(T0,

Re0) by molecular dynamics simulation for lack of experiment

data. For a surface of tension with radius RS, we can use the

expression as follow3
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where R∞ is a r value of any point in the interior of the vapour

and pN(r) is the normal pressure

)r(p)r(p)r(p UKN += (18)

where pU(r) is configurational normal pressure and pK(r) is

kinetic pressure

)r(Tk)r(p BK ρ= (19)

with kB and ρ(r)being Boltzmann constant and the density of

the number of molecules, respectively8.

If we have γS, then the relation6
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gives the surface tension γe corresponding to the equimolar

surface.

Computer simulations study: Nanoscale liquid threads

formed by argon atoms are our subjects investigated. Serving
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as an illustration of our scheme described above, we take 4800

particles to carry out this scheme for restrictive conditions Re

= Re(T).

The Lennard-Jones potential between particles takes the

form9
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where rij, e and s are the inter-particle distance, energy scale

and atomic diameter, respectively. For interatomic interaction,

the parameters are chosen as e/kB = 93.16 K, kB = 1.38 × 10-23

J/K, s = 0.3405 nm, m = 6.63382 × 10-26 Kg. All quantities are

reduced by reduced by ε, σ, Boltzmann’s constant k and the

particle mass m. The rectangular box size of simulation system

is x* × y* × z* = 60.0 × 60.0 × 18.0. The cutoff distance rc
* is

3.0. The initial configuration was constructed by putting

particles on a finite cubic lattice located at the central part of

the box. The mirror boundary condition is used in X-direction

and Y-direction. The periodic boundary condition is used in

Z-direction. The axis of symmetry of cylinder is Z-axis. At

the initial time the particles were given velocities according to

the Maxwell-Boltzmann distribution. The Velocity-Verlet

algorithm is used in molecular dynamic simulation. The cell

index method is adopted in calculation of force acted on

atoms. The system is first thermalized during 130 000 time

steps and NVT ensemble is used before equilibration. The

subsequent time long runs (up to 1000 000 time step after an

equilibration period of 130 000 steps) are needed to obtain

acceptable statistics. NVE ensemble will be needed to give

the statistics of different parameters. Simulations are run at

different temperatures: T = 66, 68, 70, 72, 74, 76, 78, 80.

The values of Re0 = Re(T0) and γe0 = γe(T0, Re0) were calcu-

lated by molecular dynamics simulation. In this paper our aim

of the stimulation is only to give a simple example for our

method, therefore to avoid the expensive costs of computational

time for adjustment of the particle number of the system

according to a given function Re(T), we changed the tempe-

rature T and kept the total number of particles of the system

including liquid and vapour N unchanged, so that the equimolar

radius Re changed with the temperature spontaneously. Thus

we easily obtained a numerical function Re(T) given by

molecular dynamics simulation. In fact, we heated the system

gradually from 66-80 K with interval 2 K.

The numerical function ∆p(T) were calculated for every

2 K by eqns. 18, (19) and molecular dynamics simulation.

The numerical function εe(T) were calculated by eqns.

15, 16, 21 and molecular dynamics simulation.

The numerical function γe(T) = γ(T, Re(T)) were calculated

by eqn. 14 with use of Re0 and γe0.

RESULTS AND DISCUSSION

For the system of 4800 particles in a rectangular box with

size 60.0σ × 60.0σ × 18.0σ, Fig. 1 gives a snapshot of simulated

system after equilibrium

We give an example of radial density profile for a liquid

thread with particles number 4800 in Fig. 2. The density profile

was calculated in the usual way by counting the number of

molecules N(r) in the cylindrical shell with thickness ∆r =

Fig. 1. A snapshot of simulated system after equilibrium
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Fig. 2. Radial density profile at T = 66 K for a liquid thread with particles

number 4800

0.5. The fluctuation of ρ* is related to the statistics. When the

density profile was obtained, the radius of the equimolar surface

can be determined.

The results of numerical functions Re
*(T), ∆p*(T), εe

*(T)

and γe
*(T) for N = 4800 are shown in Table-1. From Table-1,

we know that the Re
* decreases with increasing temperature,

which is caused by evaporation. There is an overall decrease

in the magnitude of the surface tension with increasing

temperature, which is in good qualitative agreement with the

predictions of thermodynamical theories8. More exactly, γe
*

decreasing with increasing temperature attributes not only to

the temperature change itself but also to the decrease of , which

is called “Tolman effect”10. The behaviour of  attributes to

both of Tolman effect and temperature effect.

TABLE 1 

MOLECULAR DYNAMICS SIMULATION RESULTS OF 
SURFACE TENSION AND RELATED INTERMEDIATE RESULTS 

T T* Re
* ∆p* εe

* γe
* 

66 

68 

70 

72 

74 

76 

78 

80 

0.7085 

0.7300 

0.7514 

0.7729 

0.7943 

0.8158 

0.8373 

0.8587 

9.839 

9.827 

9.806 

9.782 

9.755 

9.733 

9.691 

9.656 

0.062 

0.058 

0.055 

0.053 

0.049 

0.046 

0.043 

0.042 

-0.015 

0.006 

0.020 

0.038 

0.059 

0.084 

0.111 

0.125 

0.582 

0.559 

0.535 

0.520 

0.487 

0.463 

0.422 

0.416 
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Conclusion

For the determination of surface tension of liquid threads

from molecular dynamics simulations, the most time-consuming

part, i.e., the part most difficult to enhance the precisionis the

calculation of pressure tensors in the surface layer. To overcome

this difficulty, we have deduced a formula that permits us to

calculate the surface tensions by molecular dynamics simu-

lation. The advantage of this method consists in decreasing

the calculation quantity of pressure tensors in transition layer

to the least. 4800 particles are taken to show how to carry out

our scheme.
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