


ASIAN JOURNAL OF CHEMISTRY

http://dx.doi.org/10.14233/ajchem.2013.15533

Effect of Different Substituents on Geometrical Structure of [60] Fullerene Derivatives

YAN-HUA CAI^{1,2,*}

¹School of Materials and Chemical Engineering, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, P.R. China ²Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, P.R. China

*Corresponding author: E-mail: caiyh651@yahoo.com.cn

(Received: 25 March 2013;

Accepted: 23 September 2013)

AJC-14172

Effect of different substituents on geometrical structure of [60] fullerene derivatives was investigated by Dmol3. The results indicated that LUMO of three [60] fullerene derivatives mainly focued on [60] fullerene and degree of concentration of LUMO decreased with increasing of substituent number. However, the HOMO of [60] fullerene derivatives did not only focus on [60] fullerene and the HOMO moved other group. The value of energy gaps ΔE was the largest when [60] fullerene without substituents and the ΔE was the smallest when the substituents number of pyrrolidine of [60] fullerene derivatives was the most, the value was 0.053347 eV. The variety of bond length and angle of [60] fullerene derivatives were affected by substituents.

Key Words: [60] fullerene, Geometrical structure, Substituents.

INTRODUCTION

[60] fullerene has attracted more and more interest since [60] fullerene was found and [60] fullerene was widely used in materials sciences¹, chemical sciences², bio-sciences³, etc. due to its unique geometrical structure. In order to further wide the application of [60] fullerene, more and more [60] fullerene derivatives were synthesized by chemical modification. However, there existed a little literature about the geometrical structure of [60] fullerene derivatives. The geometrical structure is very important to know the properties of [60] fullerene derivatives and wide the application of [60] fullerene derivatives. Belosludov et al.4 reported that the complex of hydroquinone and C₆₀ has been studied by ab initio and lattice dynamics calculations. These results showed that the equilibrium geometry of C₆₀ in the cage was similar to the geometry of the isolated C₆₀ and no charge transfer occured. The geometrical structures of N@C₆₀*FeCp were investigated. there existed two isomers with the energy difference of 0.13 eV, one is that the encased nitrogen atom is located at the center of the fullerene cage. The Fe atom is η^5 -coordinated to both Cp and R*. The another is that the atom is coordinated to R* with η^4 hapticity and the nitrogen atom is bonded to a carbon atom of the R* ring in the other isomer⁵.

In this paper, in order to confirm the geometrical structure of [60] fullerene derivatives and effect of substituents on geometrical structure of [60] fullerene derivatives, we investigate

the geometrical structure of three [60] fullerene derivatives with different substituents.

THEORETICAL CALCULATION METHOD

Three [60] fullerene derivatives with different substituents were labled as A, B, C (Fig. 1). The theoretical calculation was performed using Dmol3 and the calculation quality was fine and use symmetry.

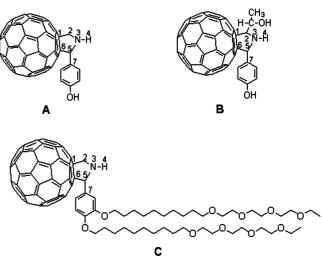


Fig. 1. Three [60] fullerene derivatives with different substituents

RESULTS AND DISCUSSION

Optimization structure of [60] fullerene derivatives:

The optimization structure of [60] fullerene derivatives were showed in Fig. 2 and the relative energies and the energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were calculated (Figs. 3 and 4). As shown in Fig. 3, LUMO of three [60] fullerene derivatives with different substituents mainly focus on [60] fullerene and degree of concentration of LUMO decreases with increasing of substituent number. However, the HOMO of substituents [60] fullerene derivatives do not only focus on [60] fullerene and the HOMO moves other group such as the benzene and pyrrolidine. HOMO in benzene and pyrrolidine increases with increasing of substituent number.

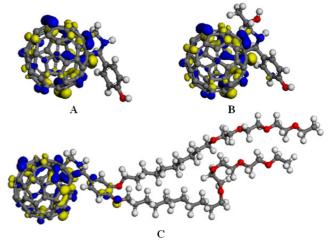


Fig. 3. HOMO of three [60] fullerene derivatives with different substituents

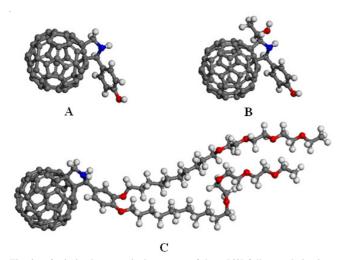


Fig. 2. Optimized geometrical structure of three [60] fullerene derivatives with different substituents

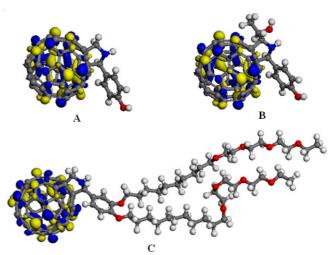


Fig. 4. LUMO of three [60] fullerene derivatives with different substituents

TABLE-1 FRONTIER ORBITAL ENERGY OF [60] FULLERENE AND THREE [60] FULLERENE DERIVATIVES WITH DIFFERENT SUBSTITUENTS					
Compound	HOMO (eV)	LUMO (eV)	ΔE (eV)		
	-0.212043	-0.150671	0.061372		
N-H OH	-0.195875	-0.142078	0.053797		
CH ₀ H-C-OH N-H	-0.196173	-0.142826	0.053347		
N-H	-0.192779	-0.139204	0.053575		

9336 Cai et al. Asian J. Chem.

The energy gaps (ΔE) between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were also calculated by Dmol3 (Table-1). The value of ΔE is the largest when [60] fullerene without substituents and the ΔE is the smallest when the substituents number of pyrrolidine of [60] fullerene derivatives is the most, the value is 0.053347 eV. The possible reason is that the electron density of pyrrolidine with more substituents is the highest and the electron easily move [60] fullerene.

Bond length and angle of [60] fullerene derivatives with different substituents: Effect of different substituents on geometrical structure of [60] fullerene derivatives also reflects the variety of bond length and bond angle. Tables 2 and 3 show the bond length and angle of [60] fullerene derivatives with different substituents. As seen in Table-2, the variety of bond length is distinct under the pyrrolidine with two substituents of [60] fullerene derivatives, the reason is that substituents may compress bond. It is this reason that makes bond angle of A, B and C evidently change. Especially, bond angle of ∠C2N3H4 is the most obvious.

TABLE-2				
BOND LENGTH OF [60] FULLERENE DERIVATIVES				
WITH DIFFERENT SUBSTITUENTS				

Bond length (nm)	A	В	C
C1-C2	1.546	1.558	1.544
C2-N3	1.435	1.440	1.432
N3-H4	1.028	1.034	1.028
N3-C5	1.437	1.440	1.442
C5-C6	1.564	1.559	1.565
C5-C7	1.484	1.486	1.485

TABLE-3 BOND ANGLE OF [60] FULLERENE DERIVATIVES WITH DIFFERENT SUBSTITUENTS

Bond angle (°)	A	В	С
∠C1C2N3	102.864	102.877	102.468
∠C2N3H4	113.660	108.838	114.192
∠N3C5C6	101.429	101.541	101.132
∠N3C5C7	115.034	114.443	112.873
∠C6C5C7	113.070	112.749	117.719

ACKNOWLEDGEMENTS

This work was supported by China Postdoctoral Science Foundation (Project No. 2013M531937), Key Project of Chinese Ministry of Education (Project No. 212144), Natural Science Foundation Project of CQ CSTC(Project No. cstc2012jjA-50001), Postdoctoral Science Foundation Project of ChongQing (Project No. XM20120035), Foundation of ChongQing Municipal Education Commission (Project No. KJ131202) and ChongQing University of Arts and Sciences (Project No. R2012CH10, 2012PYXM04).

REFERENCES

- W. Kang, M. Kitamura and Y. Arakawa, Org. Electron., 14, 644 (2013).
- M.Q. Yang, N. Zhang and Y.J. Xu, ACS Appl. Mater. Interfac., 5, 1156 (2013).
- 3. N. Ding, N. Kunugita, T. Ichinose, Y. Song, M. Yokoyama, K. Arashidani and Y.Yoshida, *J. Hazard. Mater.*, **194**, 324 (2011).
- R.V. Belosludov, M. Sluiter, Z.-Q. Li and Y. Kawazoe, *Chem. Phys. Lett.*, 312, 299 (1999).
- 5. H.S. Kang, J. Comput. Chem., 28, 594 (2007).