

ASIAN JOURNAL OF CHEMISTRY

Synthesis and Properties of Tetranuclear Octahalo Copper(II) Complexes, Pip₄Cu₄X₈ (Pip = Piperidine, X = Cl or Br) and the Dimer Pip₄Cu₂Cl₄ in Aprotic Media

AHMED HASSAN ABDEL-SALAM^{1,2} and HISHAM A. ABO-EL-DAHAB^{2,3,*}

(Received: 3 November 2012;

Accepted: 28 June 2013)

AJC-13718

This paper reports a new family of tetranuclear Cu complexes $Pip_4Cu_4X_8$; Pip = piperidine, X = Cl or Br. Two electron oxidant Br_2 has been used to prepare $Pip_4Cu_4Br_8$ from the respective $[PipCuBr]_4$ complex. The dimeric complex, $Pip_4Cu_2Cl_4$, is also prepared by the direct reaction of anhydrous $CuCl_2$ with piperidine in O_2 -free CH_2Cl_2 . These complexes are isolated as stable solids. They are easily soluble in aprotic solvents as CH_2Cl_2 or $PhNO_2$. Cryoscopic measurements support tetranuclear core structure for $Pip_4Cu_4X_8$.

Key Words: Octahalo copper(II) complexes and dimer, Pip₄Cu₂Cl₄.

INTRODUCTION

Progress in understanding the stoichiometry, structural, chemical and photophysical properties of polynuclear halo (amine) Cu(I) complexes has advanced considerably over the previous years¹⁻⁷. Copper(I) halides react quantitatively with piperidine (Pip) in O₂ free CH₂Cl₂ or PhNO₂ to form tetranuclear Cu(I) complexes [(Pip)_nCuX₄]; n = 1 or 2, X = Cl, Br or I. These complexes are soluble in CH₂Cl₂ and PhNO₂. Analytical and cryoscopic data (Table-1) establish the formation of discrete tetranuclear products. The full three-dimensional molecular geometry of [PipCuI]₄ was determined using X-ray crystallographic study by El-Sayed *et al.*⁸ and Schramm⁹.

EXPERIMENTAL

The piperidine (azacyclohexane) (Pip), (Aldrich) was distilled under reduced pressure before use. High purity N_2 was deoxygenated by passage through a column of Alfa-DE-OX solid catalyst and dried by passage through a 60 cm

column of dehydrated silica gel and 30 cm column of "CaCl₂ and molecular sieves". Bromine (Aldrich) was used as received. Copper(I) halides were prepared as described in literature¹⁰. Anhydrous CuCl₂ was obtained from the hydrate (Alfa) by heating overnight at 120 °C *in vacuo*. Nitrobenzene was distilled under reduced pressure from P_4O_{10} and stored over 4 Å molecular sieves. Dichloromethane was washed with concentrated H_2SO_4 , dried over Na_2CO_3 , refluxed over P_4O_{10} , then distilled and stored over anhydrous $Na_2CO_3^{11}$.

Synthesis of Pip₄Cu₄Cl₈: Pip₄Cu₄Cl₈ was prepared by treating a large excess of anhydrous CuCl₂ (30 mmol) with piperidine (10 mmol) in CH₂Cl₂ (60 cm³) similar to the preparation of N₄Cu₄Cl₈; $N = N_1N_2$ -diethylnicotinamide¹.

Synthesis of Pip₄Cu₄Br₈: A solution of piperidine (2.5 mmol) in anhydrous CH_2Cl_2 (25 cm³) was flushed with N_2 for 15 min. The appropriate CuBr (2.5 mmol) was added and the mixture was then stirred with bubbling N_2 for 15-20 min. A clear solution of $[PipCuBr]_4$ was obtained. A deoxygenated CH_2Cl_2 solution of Br_2 (1.25 mmol) was then added with

TABLE-1								
	ANALYTICAL AND CRYOSCOPIC DATA FOR $Pip_4Cu_4X_8$; X = Cl OR Br AND $Pip_4Cu_2Cl_4$ DIMER							
Complex		Molar mass ^a						
	С	Н	N	X	Cu	- Ivioiai iliass		
Pip ₄ Cu ₄ Cl ₈	27.8 (27.3)	5.4 (5.0)	6.5 (6.4)	33.0 (32.3)	30.4 (28.9)	848 ± 20 (878)		
Pip ₄ Cu ₄ Br ₈	20.9 (22.1)	3.9 (3.6)	4.8 (4.5)	52.9 (51.8)	21.6 (20.6)	$1190 \pm 20 (1234)$		
Pip ₄ Cu ₂ Cl ₄	35.5 (39.4)	7.1 (7.2)	8.3 (9.2)	22.0 (23.3)	21.1 (20.9)	590 ±20 (609)		
^a Measured in nitrobenzene at $(3-5) \times 10^{-2}$ molal level ¹² .								

¹Department of Chemistry, Faculty of Science, King Abdul-Aziz Univeristy, Jeddah, North Jeddah, Saudi Arabia

²Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, El-Ibrahimeia, Alexandria 21321, Egypt

³Department of Chemistry, College of Science, Umm-Al-Qura University, Makkah, Saudi Arabia

^{*}Corresponding author: E-mail: hdahab-41@hotmail.com

stirring to [PipCuBr]₄. An immediate colour change to dark brown was observed as a result of Cu(I) oxidation. After filtration the brown product Pip₄Cu₄Br₈ was isolated as solid by solvent evaporation.

Synthesis of dimer, Pip₄Cu₂Cl₄: A solution of piperidine (2.5 mmol) in anhydrous CH₂Cl₂ (25 cm³) was added to the appropriate anhydrous CuCl₂ (1.25 mmol) and stirred for 15-20 min. An immediate brown complex was observed due to formation of dimer, Pip₄Cu₂Cl₄. After filtration the brown product Pip₄Cu₂Cl₄ was isolated as solid by solvent evaporation.

All the above complexes were identified by cryoscopic molecular mass determination in PhNO₂, (m.p. = 5.7 °C, freezing point depression constant, $K_f = 7.0$ °C/molal)¹², using Eutechnics precision temperature model 4600 thermometer.

The elemental Cu and halogen (Cl and Br) contents were determined as reported in the literature¹³. All other elemental analyses were determined using LECO CHNS-932 elemental analyzer at Microanalytical laboratory, Chemistry Department, Kuwait University, Kuwait. Molecular mass and analytical data for the isolated complexes are collected in Table-1.

Physical measurements: Electronic spectra for the prepared complexes in CH₂Cl₂ or PhNO₂ were measured by Varian Cary-5 double beam spectrometer at room temperature. FT-IR spectra of KBr disks for solid products or KBr plates for liquid ligand were obtained using Perkin Elmer system 2000 FT-IR spectrophotometer at room temperature, at Kuwait University. The 906.5 or 3026.3 cm⁻¹ absorption of polystyrene were used for calibration. The EPR spectra for samples of piperidine complexes were measured at the Kuwait University on a Radiopan Varian spectrometer at 100.0000 KHz and at different G modulation amplitude with a rectangular TE 102 cavity and 100 KHz modulation field. Resonance conditions were found at ca. 9.7 GHz (X-band) at room temperature only. The field was calibrated with a powder of diphenylpicrylhydrazyl (DPPH; $g = 2.0037)^{14}$. Thermal analyses of these complexes were carried out using a Shimadzu thermal system 50 consisting of TGA-50 and DTA-50. The rate of heating was 10 °C/min. All the measurements were carried out in a current of N₂ lowing at 50 cm³/min.

RESULTS AND DISCUSSION

Copper(I) halides react quantitatively with piperidine (Pip) in O_2 free CH_2Cl_2 or $PhNO_2$ to form tetranuclear Cu(I) complexes $[(Pip)_nCuX_4]$; n=1 or 2, X=Cl, Br or I, eqn. 1. Stoichiometry of either $[(Pip)_nCuX]_4$ or their oxo analogues $[(Pip)_nCuX]_4O_2$; n=1 or 2 and X=Cl, Br or I^8 .

$$4\operatorname{Pip} + 4\operatorname{CuX} \longrightarrow [\operatorname{PipCuX}]_4 \tag{1}$$

The tetranuclear octachloro complex, Pip₄Cu₄Cl₈ was prepared by the stoichiometric reaction of Pip with excess anhydrous CuCl₂ in aprotic solvent, eqn. 2.

$$4Pip + 4CuCl_2 \longrightarrow Pip_4Cu_4Cl_8$$
 (2)

Although the corresponding octabromo-complex can not be obtained from $CuBr_2$, it can be synthesized by stoichiometric oxidation of the tetranuclear Cu(I) complex $[PipCuBr]_4$ with Br_2 , eqn. 3.

$$[PipCuBr]_4 + 2Br_2 \longrightarrow Pip_4Cu_4Br_8$$
 (3)

Many attempts to crystallize $Pip_4Cu_4X_8$ (X = Cl or Br) either from saturated solutions or by diffusing anhydrous either into saturated solutions in CH_2Cl_2 in a closed system were unsuccessful. All the brown products of eqns. 2 and 3 are highly soluble in CH_2Cl_2 and PhNO₂. Cryoscopic and analytical data in Table-1 indicate that $Pip_4Cu_4X_8$ (X = Cl or Br) are discrete tetranuclear species. The dimeric complex, $Pip_4Cu_2Cl_4$, was prepared by the stoichiometric reaction of piperidine with anhydrous $CuCl_2$ in aprotic solvent, eqn. 4.

$$4Pip + 2CuCl_2 \longrightarrow Pip_4Cu_2Cl_4 \tag{4}$$

Infrared spectra: The major features of IR spectra of free Pip¹⁵ and Pip₄Cu₄Cl₈, Pip₄Cu₄Br₈ and Pip₄Cu₂Cl₄ complexes as KBr disks (Fig. 1).

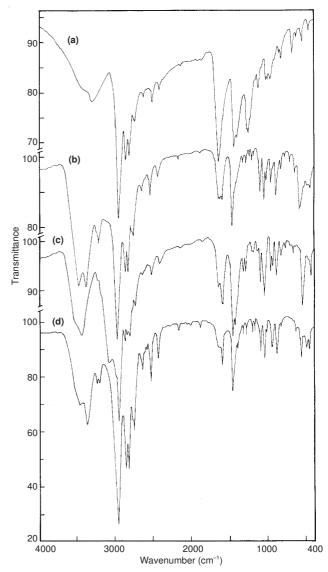


Fig. 1. KBr disk IR spectra (4000-400 cm $^{\!-1}\!$) for (a) piperidine, (b) Pip_4Cu_4Cl_8 (c) Pip_4Cu_4Br_8 (d) Pip_4Cu_2Cl_4

For v_{NH} , the relative intensity of the band of the free piperidine ligand shown as very weak shoulder at 3425 cm⁻¹ and a medium broad band at 3298 cm⁻¹ are changed to a strongly splitted resolved band at 3450 and 3355 cm⁻¹ for Pip₄Cu₄Cl₈ complex. For Pip₄Cu₄Br₈ this band appears at 3510 and 3426 cm⁻¹. For the dimeric complex, Pip₄Cu₂Cl₄, this band

7414 Abdel-Salam et al. Asian J. Chem.

appears at 3450 and 3350 cm⁻¹. These changes in band positions at higher wavenumber are due to the complexation of piperidyl N-H, which are very similar to [PipCuX] $_4$ O $_2$; X = Cl or Br⁸.

For δ_{NH} , the strong band centered at $1632~cm^{-1}$ in the free piperidine is changed and splitted to $1631\text{-}1589~cm^{-1}$ for the Cu(II) complex of Pip₄Cu₄Cl₈. For Pip₄Cu₄Br₈ complex, this band is shifted to 1634 and $1583~cm^{-1}$. For the dimer complex, Pip₄Cu₂Cl₄, this band appears at $1635~and~1588~cm^{-1}$. The bending mode of vibration for CH₂-N (δ_{CH_2-N}) is changed from $1430~cm^{-1}$ in the free piperidine to higher wavenumber at $1450,~1448~and~1458~cm^{-1}$ for the Pip₄Cu₄Cl₈, Pip₄Cu₄Br₈ and Pip₄Cu₂Cl₄ complexes, respectively.

A new band appears at 570 and 540 cm $^{-1}$ which is due to ν_{CuCl} and ν_{CuBr} in the Pip₄Cu₄Cl₈ and Pip₄Cu₄Br₈ complexes, respectively. For the dimer, Pip₄Cu₂Cl₄, the ν_{CuCl} band appears at 552 cm $^{-1}$.

From the above observations, it is concluded that when piperidyl nitrogen is coordinated to the Cu centers, the N-H vibrational modes are sensitive to such coordination^{8,16}.

Electronic spectra: Electronic spectral data for Pip₄Cu₄X₈, X = Cl or Br and Pip₄Cu₂Cl₄ are listed in Table-2 (Fig. 2). For the octahalo complexes, split maxima in the range of 762 and 847 nm are observed in Fig. 2 which indicates copper centers with a minimum of three halo ligands per each copper center^{17,18}. When X is changed from Cl to Br, absorptivitiy (ε, M^{-1} cm⁻¹) is strongly increased (Fig. 2a-b). Similar spectra with about the same broad band positions indicate that the electronic spectra of the above complexes are due to charge transfer between a minimum of three halo ligands with each Cu(II) site. Such a conclusion supports a tetranuclear cubane core structure^{1,8,19-21} for Pip₄Cu₄X₈, X = Cl or Br (**Scheme-I**).

The electronic spectrum of dimer, Pip₄Cu₂Cl₄, in CH₂Cl₂ shows a split maximum in the range of 750 and 844 nm (Fig. 2c), which indicate copper centers with a minimum of three halo ligands per each copper center^{17,18}. Similar spectra with about the same broad band positions indicate that the electronic spectra of the above complexes are due to charge transfer between a minimum of three halo ligands with each Cu(II) site⁸.

EPR spectra: The X-band ESR spectral data of the polycrystalline of Pip₄Cu₄X₈, X = Cl or Br and Pip₄Cu₂Cl₄ are given in Table-2. All EPR spectra are explained according to Hathaway and Billing²². The complexes show an axial spectra with $g_{\parallel} > g_{\perp}$, representing a d_x^2 - y^2 ground state for all of them. Based on the electronic spectra, elemental analyses, IR spectral data and these ESR data square pyramidal arrangement²²⁻²⁶ could be suggested for these complexes.

The room temperature X-band ESR spectra, Fig. 3, displays an axial parameters $g_{\parallel}=2.3$ and $g_{\perp}=2.02$ characteristics

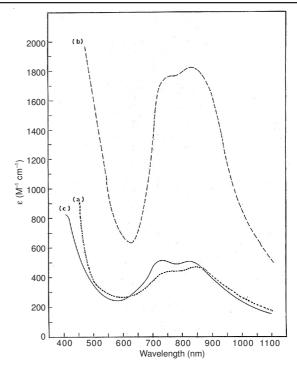
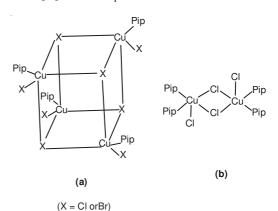



Fig. 2. Electronic spectra of (a) Pip $_4$ Cu $_4$ Cl $_8$ (b) Pip $_4$ Cu $_4$ Br $_8$ (c) Pip $_4$ Cu $_2$ Cl $_4$ in CH $_2$ Cl $_2$ at room temperature

Scheme-I: Proposed molecular core structure for (a) $Pip_4Cu_4X_8$ (b) $Pip_4Cu_2Cl_4$

of the population of $d_{x^2-y^2}$ in the ground state for these copper(II) complexes. The average g-value of 2.1 also suggests $d_{x^2-y^2}$ ground state. The appearance of hyperfine lines in the parallel region indicates a copper-ligand bond covalency. However such splitting in the g_{\perp} region is not observed due to the unresolved ligand hyperfine interaction at room temperature. The hyperfine line splitting A_{\parallel} of 142-152 G obtained from the spectra are consistent with a strong distortion from the planarity. In general the empirical factor $f = g_{\parallel}/A_{\parallel}$ is

	TABLE-2									
ROOM TEMPERATURE SOLID STATE X-BAND EPR AND ELECTRONIC SPECTRAL										
DATA FOR $Pip_4Cu_4X_8$, $X = CI$ OR AND $Pip_4Cu_2Cl_4$ DIMER AT ROOM TEMPERATURE										
Complex	EPR $\lambda_{\max}^{a}(nm)^{b}(\epsilon_{\lambda_{\max}})$						M-1 am-1)			
	$A_{\parallel}^{\ a}$	g_{\parallel}	g_{\perp}	<g></g>	G	f	α^2	$-\lambda_{\max}(\min)$ (8)	max IVI CIII)	
Pip ₄ Cu ₄ Cl ₈	-	2.29	2.02	2.11	16.3	-	-	762 (445)	844 (475)	
Pip ₄ Cu ₄ Br ₈	142	2.3	2.01	2.10	38.7	162	0.35	762 (1705)	847 (1685)	
Pip ₄ Cu ₂ Cl ₄	152	2.3	2.02	2.11	16.8	151	0.36	750 (533)	844 (505)	
^a Units are 10 ⁴ cm ⁻¹ ^b in CH Cl. at room temperature										

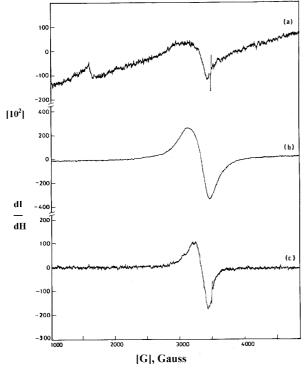


Fig. 3. Room temperature solid state X-band EPR spectra for (a) Pip₄Cu₄Cl₈ (b) Pip₄Cu₄Br₈ (c) Pip₄Cu₂Cl₄

an index of the tetragonal distortion and calculated to be 151-162 cm⁻¹, indicates a strong distortion may be due to the flexible structure. In general the distortion from the planarity towards the tetragonally distorted structure results in decrease in A_{\parallel} and increase in g_{\parallel} as shown in a number of synthetic and biologically active examples involving copper(II). As shown the value of A_{\parallel} is small and in line with that of dominantly strong distorted complex especially tetragonally distorted copper(II) complexes.

The value of the in-planar π bonding parameter α^2 can be estimated from the expression:

 $\alpha^2 = A_{\parallel}/0.036 + (g_{\parallel} - 2.0023) + 3/7(g_{\perp} - 2.0023) + 0.04$ and is found to be 0.36, consistent with mainly covalent copper-in-plane-ligand bonding which in agreement with results obtained for the value of g < 2.30.

The spectrum of Pip₄Cu₄Cl₈ shows additional signals at 1604 G which gave value of g = 4.32 due $\Delta M_s = +2$, characteristic of polynuclear copper(II) complex.

Thermal analysis: The thermogravimetic (TG) and the derivative thermogravimetic (DTG) plots of the complexes in the 50-800 $^{\circ}$ C range under N₂ are shown in Fig. 4. Their stepwise thermal degradation data are given in Table-3. All complexes show three-stage mass loss.

The thermal analysis data (Table-3), show the following observation: All Cl lost at 293 °C for, $Pip_4Cu_4Cl_8$ while for the dimer, $Pip_4Cu_2Cl_4$ all Cl lost at 541 °C. The thermal degradation data show the molecular structure for all of them, tetranuclear for both $Pip_4Cu_4X_8$, X = Cl or Br and dinuclear for $Pip_4Cu_2Cl_4$.

Conclusion

This paper reports the tetranuclear copper complexes of $Pip_4Cu_4X_8$, X = Cl or Br and $Pip_4Cu_2Cl_4$ dimer. Two electron

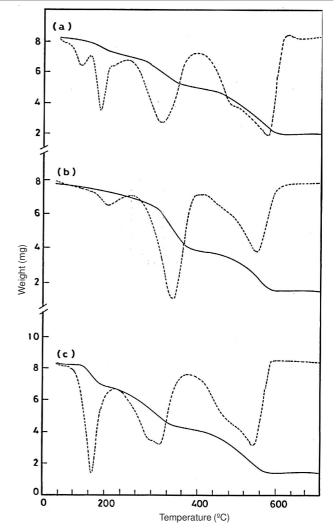


Fig. 4. TG (—) and DTG (----) plots of (a) Pip₄Cu₄Cl₈ (b) Pip₄Cu₄Br₈ (c) Pip₄Cu₂Cl₄

TABLE-3							
THERMAL ANALYSIS FOR $Pip_4Cu_4X_8$, X = Cl, Br AND $Pip_4Cu_2Cl_4$							
	Molar mass	DTG	Mass	s loss (%)	Expected		
Complex		T _{max} (°C)	Found	Theoretical	ligand lost		
	878	143	8.3	8.1	Cl_2		
Din Cu Cl		293	24.5	24.3	3Cl ₂		
Pip ₄ Cu ₄ Cl ₈		553	35.9	38.7	4Pip		
		-	31.3	28.9	4Cu		
	1234	172	6.8	6.9	Pip		
Pip ₄ Cu ₄ Br ₈		338	39.5	40.2	3Br + 3 Pip		
		556	31.7	32.4	5Br		
		_	22.0	20.5	4Cu		
	-	127	19.0	19.8	Cl + Pip		
Pip ₄ Cu ₂ Cl ₄		300	29.3	28.0	2Pip		
r ip ₄ cu ₂ ci ₄		541	32.5	31.4	3Cl + Pip		
		-	19.2	20.8	2Cu		

oxidants Br₂ has been used to prepare Pip₄Cu₄Br₈ from the respective [PipCuBr]₄ complex. As indicated in **Scheme-I**, both Pip₄Cu₄Cl₈ and Pip₄Cu₄Br₈ are two molecular units in which the environment around copper centers in each unit are similar, but the ESR spectra indicate a Cu-Cu interaction in Pip₄Cu₄Cl₈ which indicate antiferromagnetic interactions.

7416 Abdel-Salam et al. Asian J. Chem.

ACKNOWLEDGEMENTS

The author thanks Prof. Dr. Mohamed A. El-Sayed, Chemistry Department, Faculty of Science, Alexandria University, for support and for valuable discussions and Prof. Dr. Ali El-Dissouky, Kuwait University for assistance with measurements.

REFERENCES

- 1. M.A. El-Sayed, Polyhedron, 11, 1261 (1992).
- 2. K.G. Caulton, G. Davies and E.M. Holton, Polyhedron, 9, 2319 (1990).
- 3. G. Davies and M.A. El-Sayed, Inorg. Chem., 22, 1257 (1983).
- G. Davies and M.A. El-Sayed, In eds.: K.D. Karlin and J. Zubieta, In Copper Coordination Chemistry: Biochemical Perspective, Adenine Press, Guilderland, New York, p. 281 (1983) and refs therein.
- 5. K.D. Karlin and Y. Gultneh, *Prog. Inorg. Chem.*, **35**, 219 (1987).
- (a) M.R. Churchill, G. Davies, M.A. El-Sayed, J.P. Hutchinson and J.A. Zubieta, *Inorg. Chem.*, 23, 783 (1984); (b) M.A. El-Sayed, A. El-Toukhy and G. Davies, *Inorg. Chem.*, 24, 3387 (1985).
- G. Davies, M.A. El-Sayed, A. El-Toukhy, T.R. Gilbert and K. Nabih, *Inorg. Chem.*, 25, 1929 (1986).
- 8. M.A. El-Sayed, A.H. Abdel Salam, T.A. El-Zayat, A. El-Dissouky, K.Z. Ismail, *Inorg. Chim. Acta*, **357**, 4057 (2004).
- 9. V. Schramm, Inorg. Chem., 17, 714 (1978).
- 10. R.N. Keller and H.D. Wycoff, *Inorg. Synth.*, **2**, 1 (1946).
- M.R. Churchill, G. Davies, M.A. El-Sayed, J.P. Hutchinson and M.W. Rupich, *Inorg. Chem.*, 21, 995 (1982).

G. Davies, M.A. El-Sayed and M. Henary, *Inorg. Chem.*, 26, 3266 (1987).

- (a) G. Schwarzenbach, Complexometric Titration, Methuen Co., London (1957); (b) M. Kalthoff, E.B. Sandell, E.J. Meehan and S. Bruckenstien, Quantitative Chemical Analysis, Macmillan, New York p. 812 (1969).
- J.E. Wertz and J.R. Botton, Electron Spin Resonance, McGraw-Hill, New York (1972).
- C.J. Pouchert, The Aldrich Library of Infrared Spectra, edn. 3, Aldrich Chemical Company, Inc., Milwaukee, USA (1989).
- M.A. El-Sayed, A.H. Abdel Salam, T.A. El-Zayat and A. El-Dissouky, Transition Met. Chem., 30, 616 (2005).
- G. Davies, A. El-Toukhy, K.D. Onan and M. Veidis, *Inorg. Chim. Acta*, 85, 98 (1985).
- 18. M.A. El-Sayed and G. Davies, Inorg. Chem., 29, 213 (1990).
- G. Davies, M.A. El-Sayed and R. Fasano, *Inorg. Chim. Acta*, 71, 95 (1983).
- G. Davies, M.A. El-Sayed, A. El-Toukhy, M. Henary and C.A. Martin, *Inorg. Chem.*, 25, 4479 (1986).
- M.A. El-Sayed, A. El-Toukhy, K.Z. Ismail, A.A. El-Maradne and G. Davies, *Inorg. Chim. Acta*, 182, 213 (1991).
- 22. B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 70, 143 (1970).
- 23. B.J. Hathaway, J. Chem. Soc. Dalton Trans., 1196 (1972).
- M.A. El-Sayed and G. Davies, Inorg. Chem., 29, 4891 (1990).
- B.J. Hathaway, G. Wilkinson, R.D. Gillard and J.A. Mcleverty, Comprehensive Coodination Chemistry, Pergamon, Oxford, Vol. 5, p. 534 (1985)
- M.R. Churchill, G. Davies, M.A. El-Sayed, M.F. El-Shazly, J.P. Hutchinson and M.W. Rupich, *Inorg. Chem.*, 19, 201 (1980).