

Preparation and Structure of the Non-centrosymmetric Hydrated Borate: $\mathrm{K}_{2} \mathrm{Ca}\left[\mathrm{B}_{\mathbf{4}} \mathrm{O}_{5}(\mathbf{O H})_{4}\right]_{2} \cdot \mathbf{8} \mathbf{H}_{2} \mathrm{O}$

Ying Bi ${ }^{1,2}$, Yan-Wen Tian ${ }^{1}$ and Guo-Sheng Wang ${ }^{2, *}$
${ }^{1}$ School of Materials \& Metallurgy, Northeastern University, Shenyang 110004, P.R. China
${ }^{2}$ College of Chemical Engineering, Shenyang University of Chemical and Technology, Shenyang 110142, P.R. China
*Corresponding author: Tel: +86 158 40406733; E-mail: wgsh-lyc@ 163.com

(Received: 11 October 2012;
Accepted: 26 June 2013)
AJC-13705

Abstract

Single crystal of hydrated borate $\mathrm{K}_{2} \mathrm{Ca}\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{KCB})$ has been grown with sizes up to $30 \mathrm{~mm} \times 10 \mathrm{~mm} \times 5 \mathrm{~mm}$ under the condition of water solution. The structure is determined by X-ray diffraction, IR and SEM. It crystallizes in the orthorhombic space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$, with $\mathrm{a}=16.59700(\AA), \mathrm{b}=12.46900(\AA), \mathrm{c}=11.56900(\AA), \mathrm{z}=4$. In the structure, Ca and K atoms are disordered on different 4 a sites. The fundamental building units are K-O polyhedra, $\mathrm{Ca}-\mathrm{O}$ polyhedral and $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ polyborate anions, with the new coordination number of $\mathrm{K}_{1}{ }^{+}, \mathrm{K}_{2}{ }^{+}$and Ca^{2+} is $9,7,6$. And we fit the crystal structure and ideal shape integrallty.

Key Words: Crystal structure, Preparation, Hydrated borate, Characterization.

INTRODUCTION

Many large compounds are mainly composed of boron atoms so that they own the unique structural characteristics of boron-oxygen group, with planar BO_{3} and tetrahedral BO_{4} groups as the basic structures. These BO_{3} triangles and BO_{4} tetrahedral can further link together via common oxygen atoms to form isolated rings or cages, or polymerize into infinite chains (1D), sheets (2D) or networks (3D).

Generally, borates include single metal and double metal borates. The later is composed of alkaline earth metals and alkali metals mostly. Alkali metal and alkaline-earth metal borates have produced a large family of compounds with outstanding physical properties. For instance, Ca-B-O and K-B-O ternary system, especially more excellent new borates, have been found, such as $\mathrm{KB}_{5} \mathrm{O}_{8} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{1}, \mathrm{~K}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 7 \mathrm{H}_{2} \mathrm{O}^{2}$, $\mathrm{K}\left(\mathrm{B}_{5} \mathrm{O}_{6}(\mathrm{OH})_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}^{2}, \mathrm{~K}_{4}\left[\mathrm{~B}_{10} \mathrm{O}_{15}(\mathrm{OH})_{4}\right]^{3}, \mathrm{CaB}_{8} \mathrm{O}_{11}(\mathrm{OH})_{4}{ }^{4}$, $\mathrm{Ca}\left[\mathrm{B}_{5} \mathrm{O}_{8}(\mathrm{OH})\right] \cdot \mathrm{H}_{2} \mathrm{O}^{5}, \mathrm{xCaO} \cdot 5 \mathrm{~B}_{2} \mathrm{O}_{3} \cdot \mathrm{yH}_{2} \mathrm{O}(\mathrm{x}=2$ and $4, \mathrm{y}=5$ and 7$)^{6}, \mathrm{Ca}\left(\mathrm{B}_{3} \mathrm{O}_{5}(\mathrm{OH})\right)^{7}, \mathrm{Ca}_{4}\left(\mathrm{~B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{5}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}^{7}$ and $\mathrm{Ca}_{2}\left(\mathrm{~B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{5}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}^{7}$, which have been importantly applied in optical materials, glass materials and communication materials. $\mathrm{K}_{2} \mathrm{Ca}\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{KCB})$ as a kind of potassium and calcium borates, has been applied in manufacturing colour ceramic, porcelain glazes and glass preparation. Its composition and structure has been studied by Solans and Altaba ${ }^{8}$, and Jia et al. ${ }^{9}$. It is found that KCB has 8, 6, 7 or 5, 5, 6 coordination number of $\mathrm{K}_{1}{ }^{+}, \mathrm{K}_{2}{ }^{+}$and Ca^{2+}, respectively. But, to the structural description of KCB , it is imperfect. In this paper, we report on the syntheses and structural characteristics
of the hydrated borates $\mathrm{K}_{2} \mathrm{Ca}\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{KCB})$ with different coordination number of $\mathrm{K}_{1}{ }^{+}, \mathrm{K}_{2}{ }^{+}$and Ca^{2+}. And we fit the crystal structure integrallty.

EXPERIMENTAL

Preparation: At $35^{\circ} \mathrm{C}$, a mass ratio of 25:50:7.43 of KOH , $\mathrm{H}_{3} \mathrm{BO}_{3}$ and $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were mixed with stirring speed 400 rpm , in a 500 mL three-neck flask. Under the rate of drop temperature- $2^{\circ} \mathrm{C} /$ day from $35^{\circ} \mathrm{C}$, the single crystals of KCB began to generate after 3 days. Characterization crystallization existed in 15 days at room temperature. Then, the colourless block crystals were physically separated from the matrix. All reagents were analytical grade.

Characterization: The crystallographic information of KCB was obtained by X-ray powder diffraction and FT-IR spectroscopy recorded over the $4000-400 \mathrm{~cm}^{-1}$ region on a Nicolet 470 spectrometer with KBr pellets at room temperature. Its diffraction patterns were collected using a D8 Advance Xray diffractometer, operating in the Bragg configuration using $\mathrm{CuK}_{\alpha} 1$ radiation ($\lambda=1.54 \AA$) from $10-50^{\circ}$ at a scanning rate of $0.2^{\circ} / \mathrm{min}$ for the identification of crystal phases. The morphology of the products was observed with a scanning electron microscope.

Determination of crystal structure: A colourless and transparent crystal of KCB with the dimension $30 \mathrm{~mm} \times 10$ $\mathrm{mm} \times 5 \mathrm{~mm}$, was carefully selected under an optical microscope. The crystal structure was investigated by single-crystal X-ray diffraction on an automated Bruker Smart-1000 CCD
automatic four-circle diffractometer with graphite-monochromatized $\mathrm{MoK}_{\alpha}(\lambda=0.71073 \AA)$ radiation. All calculations were performed with programs from the SHELXTL crystallographic software package. Final lest-squares refinement was on $\mathrm{F}_{\mathrm{o}}{ }^{2}$ with data having $\mathrm{F}_{\mathrm{o}}{ }^{2} \geq 2 \sigma\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)$.

RESULTS AND DISCUSSION

FT-IR spectra: The IR spectra was measured at room temperature and shown in Fig. 1. According to the reference ${ }^{10}$, stretching vibration absorption peaks of O-H situate 3612$3204 \mathrm{~cm}^{-1}$ and H-O-H bending modes exist at 1685 and 1635 cm^{-1}, the peaks at 1455,1399 and $1345 \mathrm{~cm}^{-1}$ ascribing to $\mathrm{B}(3)-$ O asymmetric stretching, the two peaks at 1296 and $1165 \mathrm{~cm}^{-1}$ assigned to $\mathrm{B}-\mathrm{O}-\mathrm{H}$ bending modes, the three peaks at 1072 , 1037 and $1002 \mathrm{~cm}^{-1}$ assigned to $\mathrm{B}(4)-\mathrm{O}$ asymmetric stretching, the peak at $946 \mathrm{~cm}^{-1}$ assigned to $B(3)-O$ symmetric stretching, the peak at $834 \mathrm{~cm}^{-1}$ assigned to $B(4)-O$ symmetric stretching and the three peaks at 709,658 and $532 \mathrm{~cm}^{-1}$ assigned to $\mathrm{B}(3)$ O bending modes, the peak at $591 \mathrm{~cm}^{-1}$ assigned to symmetrical pulse vibration of $\mathrm{B}(4)-\mathrm{O}$, the peak at $463 \mathrm{~cm}^{-1}$ assigned to bending vibration peak of $\mathrm{B}(4)-\mathrm{O}$.

Fig. 1. FT-IR spectrum of the KCB
SEM Photograph: The SEM photograph of KCB crystal is shown in Fig. 2, which clearly reveals the hexagonal structure as a single crystal, 30 mm long.

Fig. 2. SEM photograph of KCB crystals
X-Ray diffraction analysis: A colourless and transparent crystal of KCB with the dimension $30 \mathrm{~mm} \times 10 \mathrm{~mm} \times 5 \mathrm{~mm}$
is selected for the crystal structure measurements. Fig. 3 shows the XRD pattern of KCB and the simulated single-crystal structure (JCPDS (76-1013)). The diffraction peaks on the patterns correspond well in position, indicating the phase purity of the as-synthesized sample. It crystallizes in the orthorhombic space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$, with $\mathrm{a}=16.59700(\AA), \mathrm{b}=$ $12.46900(\AA), \mathrm{c}=11.56900(\AA), \mathrm{z}=4$.

Fig. 3. X-Ray powder diffraction patterns of the as-synthesized KCB and the simulated

Cation and anion coordination: There are eight independent B atoms in the structure of KCB . B1, B3, B7 and B8 atoms coordinate with three O atoms in a triangular arrangement (Fig. 4(a)) while B2, B5, B4 and B6 atoms are tetrahedral coordinated with four O atoms each [Fig. 4(b)]. The mean $\langle\mathrm{B}-\mathrm{O}\rangle$ distances of BO_{3} and BO_{4} groups are 1.360 and 1.511 Å, respectively. The O-B-O angles range from 106.97-123.45 ${ }^{\circ}$ while its average value is 112.971°.

Fig. 4. Coordination environment of $\mathrm{BO}_{3}(\mathrm{a}), \mathrm{BO}_{4}(\mathrm{~b}), \mathrm{Ca}^{2+}(\mathrm{c})$ and $\mathrm{K}^{+}(\mathrm{d})$ (e) cations

One Ca atom site coordinates with seven oxygen atoms and the mean distance of $\mathrm{Ca}-\mathrm{O}$ waves in range of 2.3479 $2.479 \AA$ AFig. 4(c)]. But the reported average (Ca-O) bond length is $2.409 \AA$. In Fig. 4, there are two kinds of coordinated forms for K^{+}ions in the structure. One is one K^{+}ion coordinated by nine O atoms [Fig. 4(d)]. The other is one K^{+}ion coordinated by seven O atoms in Fig. 4(e). In the $\mathrm{K}(1) \mathrm{O} 9$ polyhedron, nine short bond lengths vary from 2.975-3.369 \AA, with $\langle\mathrm{K}-\mathrm{O}\rangle=3.109 \AA$. In the $\mathrm{K}(2) \mathrm{O} 7$ polyhedron, seven short bond lengths are in the range of 2.738-3.365 \AA, with $\langle\mathrm{K}-\mathrm{O}\rangle=3.361 \AA$.

Structure of the borate anion: Using the diamond software, we analyze the structure of KCB . The $\mathrm{BO}_{2}(\mathrm{OH})$ and $\mathrm{BO}_{3}(\mathrm{OH})$ polyhedra share their corners to form $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ polyborate anions (Fig. 5). The two $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ consist of
two eight-membered rings in which one consistes of $\mathrm{B} 1, \mathrm{~B} 2$, B5 and B8 and another includes B3, B4, B6 and B7. Every two B atoms are connected by one O atom. The structural unit in KCB can be described as $2 \Delta 2 \square:\langle 2 \Delta 2 \square\rangle$, where Δ and \square refer to BO_{3} or $\mathrm{BO}_{2}(\mathrm{OH})$ and BO_{4} or $\mathrm{BO}_{3}(\mathrm{OH})$ polyhedra, respectively [(Fig. 5(c)], according to the notation given by Burns et al. ${ }^{11}$. Anionic group $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ can be as a group of independent unit processes, because the strength of $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ anionic covalent bond is big and the ion in tetraborate anion can maintain connections in crystal and solution. The $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ units are linked together through four exocyclic oxygen atoms ((a): O4, O6, O25, O9 and (b): $\mathrm{O} 1, \mathrm{O} 19, \mathrm{O} 15, \mathrm{O} 17$) to neighboring units respectively.

Fig. 5. Coordination environment of $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2^{-}}$((a), (b), (c))
Structure description: Crystallographic analysis reveals that KCB belongs to the space group $\mathrm{P} 2_{1} 2_{2} 2_{1}$. Crystal data and structural refinement information are summarized in Table-1. Atomic coordinates parameters and the main bond lengths and angles for KCB can be seen in Tables 2 and 3. The K, Ca and

TABLE-1

CRYSTAL DATA AND STRUCTURE REFINEMENT FOR KCB

Empirical	
Formula weight	$\mathrm{K}_{2} \mathrm{Ca}\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
Temperature	$620.747 \mathrm{~g} / \mathrm{mol}$
Wavelength	$289(2) \mathrm{K}$
Crystal system	$0.71073 \AA$
Space group	Orthorhombic
Unit cell dimensions	$\mathrm{P} 2_{1} 2_{1} 2_{1}(19)$
	$\mathrm{a}=11.5801(10) \AA$
	$\mathrm{b}=12.4030(11) \AA$
Volume	$\mathrm{c}=16.5597(14) \AA$
Z	$2378.44(40) \AA^{3}$
Density (calculated)	4
Crystal size	$1.73343 \mathrm{~g} / \mathrm{cm}^{3}$
θ range for data collection	$30 \mathrm{~mm} \times 10 \mathrm{~mm} \times 5 \mathrm{~mm}$
$\mathrm{R}_{\text {All }}$	$8.901-89.993^{\circ}$
Index ranges	0.049

B atoms lie in four different 4 a sites. All of the cations are located in the anionic $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ framework and compensate its negative charge, shown in Fig. 6(a). It can be described as including $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ and the coordination environment of K^{+}and Ca^{2+} cations. The Ca atom shares an edge with one $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ and K 1 atom, meanwhile, connects a corner with another $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ and K 2 atom. The two K^{+}ions connecting one $\left.\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$, respectively, share one O-O ridge each other [Fig. 6(b-d)].

TABLE-2
ATOMIC COORDINATES PARAMETERS FOR KCB

ATOMC COORDNATES PARAMETERS FOR KCB							
Atom	x	y	z	Atom	x	z	
B1	$0.8255(3)$	$0.4181(3)$	$0.0747(2)$	O 9	$0.3905(2)$	$0.7007(2)$	$0.09826(14)$
B2	$0.7137(3)$	$0.2519(3)$	$0.0801(2)$	O10	$0.28823(19)$	$0.7303(2)$	$-0.02349(14)$
B3	$0.2873(3)$	$0.7128(3)$	$0.0576(2)$	O11	$0.1878(2)$	$0.7080(2)$	$0.10147(14)$
B4	$0.3220(3)$	$0.2552(3)$	$0.4313(2)$	O12	$0.6075(2)$	$0.2754(2)$	$0.03056(14)$
B5	$0.3234(3)$	$0.2147(3)$	$0.0395(2)$	O13	$0.7524(2)$	$0.3539(2)$	$0.11818(14)$
B6	$0.5746(3)$	$0.7827(3)$	$-0.0571(2)$	O14	$0.80308(19)$	$0.2107(2)$	$0.02628(14)$
B7	$0.5686(3)$	$0.9212(3)$	$0.0508(2)$	O15	$0.6819(2)$	$0.1775(2)$	$0.14406(14)$
B8	$0.6132(3)$	$0.2939(3)$	$-0.0511(2)$	O16	$0.8580(2)$	$0.3919(2)$	$-0.00265(14)$
Ca1	$0.31515(6)$	$0.22174(6)$	$0.22155(4)$	O17	$0.8632(2)$	$0.5118(2)$	$0.10998(15)$
K2	$0.51272(9)$	$0.47512(8)$	$0.12186(6)$	O18	$0.3254(3)$	$0.4149(2)$	$0.24151(16)$
K3	$0.50771(8)$	$0.51546(8)$	$-0.17107(6)$	O19	$0.4077(2)$	$0.2499(2)$	$0.09717(14)$
O1	$0.5162(2)$	$0.3013(2)$	$-0.09766(15)$	O20	$0.2172(2)$	$0.1996(2)$	$0.08945(14)$
O2	$0.3305(2)$	$0.4165(2)$	$-0.25482(16)$	O21	$0.5175(2)$	$0.2514(3)$	$0.25249(16)$
O3	$0.7031(2)$	$0.6213(2)$	$-0.22000(16)$	O22	$0.1123(3)$	$0.2171(4)$	$0.24593(17)$
O4	$0.4906(2)$	$0.74079(19)$	$-0.11169(14)$	O23	$0.3707(2)$	$0.0332(2)$	$0.21685(17)$
O5	$0.5396(2)$	$0.8918(2)$	$-0.02584(14)$	O24	$0.3610(2)$	$0.3611(2)$	$0.40037(14)$
O6	$0.5268(2)$	$1.0159(2)$	$0.08400(15)$	O25	$0.3030(2)$	$0.1842(2)$	$0.36224(14)$
O7	$0.6390(3)$	$0.5127(2)$	$-0.03201(18)$	O26	$0.40954(18)$	$0.2125(2)$	$0.48634(14)$
O8	$0.3644(3)$	$0.5008(3)$	$-0.0279(2)$	-	-	-	-

[^0]| TABLE-3MAIN BOND LENGTHS AND ANGLES | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bond | | Distance | Bond | Distance | | Bond | Distance |
| B1-O13 | | 1.367(4) | B7-05 | $1.362(4)$ | | K2-O13 | 3.157(3) |
| B1-O17 | | 1.372(4) | B7-O24iii | 1.369(4) | | K2-O9 | 3.160(3) |
| B1-O16 | | 1.373(4) | B7-O6 | 1.384(4) | | K2-O25iii | 3.369(3) |
| B2-O15 | | 1.453(4) | B8-O20v | 1.364(4) | | K2-Caliii | 4.477(2) |
| B2-O14 | | $1.458(4)$ | B8-O1 | 1.366(4) | | K3-O3 | 2.738 (3) |
| B2-O13 | | 1.483(4) | B8-O12 | 1.374(4) | | K3-07 | 2.760 (4) |
| B2-O12 | | 1.506(4) | Ca1-O19 | 2.349(2) | | K3-O2 | 2.764(3) |
| B3-O10 | | 1.360(4) | Ca1-O25 | 2.378(2) | | K3-O8 | 2.900(4) |
| B3-O11 | | 1.364(4) | Ca1-O22 | 2.383(4) | | K3-O1 | 2.923(3) |
| B3-09 | | 1.380(4) | Ca1-O18 | 2.422(3) | | K3-04 | 2.969(3) |
| B4-O25 | | 1.461(4) | Ca1-O23 | 2.426 (3) | | K3-O22v | 3.365 (5) |
| B4-026 | | 1.462(4) | Ca1-021 | 2.427(3) | | K3-Ca1v | 4.693(2) |
| B4-O24 | | 1.480 (4) | Ca1-O20 | 2.479(2) | | O10-B4vii | 1.490 (4) |
| B4-O10i | | 1.490(4) | Ca1-K2 | 4.224(2) | | O11-B6viii | 1.507(4) |
| B5-O19 | | 1.434(4) | Ca1-K2vi | 4.477(2) | | O14-B5v | 1.449(4) |
| B5-O14ii | | 1.449(4) | Ca1-K3ii | 4.693(2) | | O16-B5v | 1.511(4) |
| B5-O20 | | $1.494(4)$ | K2-O7 | $2.975(4)$ | | O20-B8ii | 1.364(4) |
| B5-O16ii | | 1.511(4) | K2-O18 | 3.031(4) | | O22-K3ii | 3.365(5) |
| B6-O4 | | 1.426(4) | K2-O8 | 3.034(4) | | O23-K2vi | 3.078(3) |
| B6-O26iii | | $1.472(4)$ | K2-O19 | 3.074(3) | | O24-B7vi | 1.369(4) |
| B6-O5 | | 1.505(4) | K2-O23iii | 3.078(3) | | O25-K2vi | 3.369(3) |
| B6-O11iv | | 1.507(4) | K2-O12 | 3.103(3) | | O26-B6vi | 1.472(4) |
| Bond | Angle | Bond | Angle | Bond | Angle | Bond | Angle |
| O19-Ca1-O25 | 156.16(6) | O22-Ca1-K3ii | 42.92(9) | O23-Ca1-O20 | 89.19(9) | B1-O13-B2 | 117.37(27) |
| O19-Ca1-O22 | 126.98(10) | O18-Ca1-K3ii | 132.99(7) | O21-Ca1-O20 | 130.12(8) |) $\mathrm{B} 1-\mathrm{O} 13-\mathrm{K} 2$ | 106.10(19) |
| O25-Ca1-O22 | 76.82(10) | O23-Ca1-K3ii | 65.88(6) | O19-Ca1-K2 | 45.49(5) | B2-O13-K2 | 98.55(18) |
| O19-Ca1-O18 | 87.11(10) | O21-Ca1-K3ii | 149.90(6) | O25-Ca1-K2 | 124.06(5) |) $\quad \mathrm{B} 5 \mathrm{v}-\mathrm{O} 14-\mathrm{B} 2$ | 110.54(22) |
| O25-Ca1-O18 | 93.62(10) | O20-Ca1-K3ii | 55.01(5) | O22-Ca1-K2 | 128.14(9) |) B1-O16-B5v | 120.76(24) |
| O22-Ca1-O18 | 92.82(15) | K2-Ca1-K3ii | 143.87(3) | O18-Ca1-K2 | 44.78(6) | Ca1-O18-K2 | 100.96(9) |
| O19-Ca1-O23 | 89.63(9) | K2vi-Ca1-K3ii | 90.73(2) | O23-Ca1-K2 | 124.09(6) | B5-O19-Ca1 | 103.20(16) |
| O25-Ca1-O23 | 81.91(10) | O7-K2-O18 | 161.85(10) | O21-Ca1-K2 | 56.38(6) | B5-O19-K2 | 129.39(19) |
| O22-Ca1-O23 | 104.12(12) | B8-O1-K3 | 108.89(20) | O20-Ca1-K2 | 89.15(6) | Ca1-O19-K2 | 101.49(8) |
| O18-Ca1-O23 | 160.88(9) | B6-O4-K3 | 120.50(18) | O19-Ca1-K2vi | 113.96(5) | B8ii-O20-B5 | 117.44(25) |
| O19-Ca1-O21 | 73.82(9) | B7-O5-B6 | 119.68(24) | O25-Ca1-K2vi | 47.63(5) | B8ii-O20-Ca1 | 143.94(18) |
| O25-Ca1-O21 | 83.12(9) | K3-O7-K2 | 116.49(12) | O22-Ca1-K2vi | 108.95(9) |) $\mathrm{B} 5-\mathrm{O} 20-\mathrm{Ca} 1$ | 95.67(15) |
| O22-Ca1-O21 | 156.86(11) | K3-O8-K2 | 110.57(11) | O18-Ca1-K2vi | 125.11(6) | (6) $\mathrm{Ca} 1-\mathrm{O} 22-\mathrm{K} 3 \mathrm{ii}$ | 108.24(13) |
| O18-Ca1-O21 | 76.91(12) | B3-09-K2 | 122.99(19) | O23-Ca1-K2vi | 40.76(6) | Ca1-O23-K2vi | 108.27(9) |
| O23-Ca1-O21 | 84.08(10) | B3-O10-B4vii | 120.56(23) | O21-Ca1-K2vi | 63.36(7) | B7vi-O24-B4 | 117.45(27) |
| O19-Ca1-O20 | 56.72(6) | B3-O11-B6viii | 118.13(25) | O20-Ca1-K2vi | 129.71(5) | B4-O25-Ca1 | 129.80(16) |
| O25-Ca1-O20 | 144.61(6) | B8-O12-B2 | 121.93(23) | K2-Ca1-K2vi | 119.56(2) | B4-O25-K2vi | 107.91(18) |
| O22-Ca1-O20 | 72.29(10) | B8-O12-K2 | 111.32(17) | O19-Ca1-K3ii | 106.46(6) | (6) $\mathrm{Ca} 1-\mathrm{O} 25-\mathrm{K} 2 \mathrm{vi}$ | 100.94(7) |
| O18-Ca1-O20 | 104.60(9) | B2-O12-K2 | 100.26(18) | O25-Ca1-K3ii | 90.41(6) | B4-O26-B6vi | 111.63(22) |

Symmetry codes: (1) x, y, z; (2) 0.5-x, -y, 0.5 + z; (3) $0.5+x, 0.5-y,-z ; ~(4)-x, 0.5+y, 0.5-z$.

Fig. 6. Form of cations existed in KCB [(a), (b), (c), (d)]
Crystal structure is chain arranged in parallel along the c axis (Fig. 7). Adjacent chains are further linked via H -bonding

Fig. 7. View of the structure of KCB along c axis
interaction into stratiform structure. K and Ca atoms between chains compensate the negative charge of borate chains and hold the layers together into the 3D structure through bonding with oxygen atoms of chains.

Crystal shape prediction: In the above work, we have researched the structure of KCB crystal, which is asymmetric and helical, parallel to the c axis (Fig. 7). These parallel helical chains infinite link to boric acid salt layer through the hydrogen bond in Fig. 8. In structure, K-O bond is easily broken because its bond energy is smaller than Ca-O and B-O. So the crystal fracture position is at 1, 2, 3, 4 dotted line positions. Fig. 9 shows ideal shape of KCB crystal which mark the axis direction of crystal and symbols of main display surface. The ideal shape is anastomotic with photograph of KCB crystals.

Fig. 8. Structure fitting plan along c axis of KCB

Fig. 9. Ideal and experimental shape of KCB crystal

Conclusion

In summary, $30 \mathrm{~mm} \times 10 \mathrm{~mm} \times 5 \mathrm{~mm}$ KCB crystals are synthesized by water solution method and its structure is consistent with the simulated crystal, fitting the crystal structure and ideal shape integrallty. The fundamental building block in the structure is the eight-membered ring $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$. Calcium ion has six-fold coordination, while potassium ions have ninefold and sevenfold coordination. They compensate the negative charge of borate chains and hold the layers together into the 3D structure. The presence of OH^{-}in the lattice is not desired because of their tendency to dehydrate upon heating. Further structural exploratory work need to do with change of OH^{-} group.

ACKNOWLEDGEMENTS

This work was supported by Liaoning Provincial Natural Science Foundation of China (NO. 201202175)

REFERENCES

1. J. Wang, L.-X. Zhu, S.-N. Li, S.-P. Xia and S.-Y. Gao, J. Salt Lake Res., 12, 19 (2004).
2. K.-C. Zhang and X.-M. Wang, Nonlinear Optical Crystal Materials Science, Science Press (1996).
3. P. Li and Z.-H. Liu, J. Chem. Eng. Data, 56, 102 (2011).
4. X.-S. Mou, Z.G. Hu and C.-L. Zhang, J. Synth. Crystals, 39, 10 (2010).
5. N.A. Yamnova, Yu. K. Egorov-Tismenko, N.V. Zubkova, O.V. Dimitrova, A.P. Kantor, Y. Danian and X. Ming, Crystallogr. Report, 48, 557 (2003).
6. Z.-H. Liu, P. Li and C.-F. Zuo, J. Chem. Eng. Data, 51, 272 (2006).
7. Zuo Chuan-Feng, Master's Thesis, Synthesis and Thermo Chemistry of the Hydrated Calcium Borates, Shanxi Normal University (2004).
8. X. Solans and M. Font-Altaba, Acta Crystallogr. B, 38, 2438 (1982).
9. Y.-Z. Jia, S.-Y. Gao, K.B. Yu, B. Wang, S.-P. Xia and Y. Zhou, Acta Chim. Sin., 59, 544 (2001).
10. P. Hartman and W.G. Perdok, Acta Cryst., 8, 521 (1955).
11. P.C. Burns, J.D. Grice and F.C. Hawthorne, Can. Mineral., 33, 1131 (1995).

[^0]: Symmetry codes: (1) $\mathrm{x}, \mathrm{y}, \mathrm{z}$; (2) $0.5-\mathrm{x},-\mathrm{y}, 0.5+\mathrm{z}$; (3) $0.5+\mathrm{x}, 0.5-\mathrm{y},-\mathrm{z}$; (4) -x, $0.5+\mathrm{y}, 0.5-\mathrm{z}$.

