
INTRODUCTION

Characteristics of agro-product quality have long been

linked with their geographical origin. Identification of the

geographical origin of agro-products is effective in protecting

the quality and safety of agro-product1. Increased demand for

high-quality and authentic agro-products has given rise to the

need to identify and trace the geographical origin of agro-

products. Chemical composition and content of agro-products

are dominant factors for product quality and can serve as

geographical indications of origin. Many modern analytical

instruments used in analyzing mineral content2-4, isotope

content and ratio5,6, DNA analysis7,8and volatile compounds9,10,

the collection of numerous data about the chemical charac-

teristics of agro-products is possible. Furthermore, when

combined with chemometrics, the geographical origin of

agro-products can be discerned11.

It is generally assumed that plant volatiles could attract

pollinators12, increase tolerance13, serve as plant defenses14,15

and also act in plant-plant communication. However, charac-

terizing the composition and content of volatiles in the same

kind of agro-products could be very diverse, due to the diffe-

rences of many influencing factors such as variety, processing

technology, environmental factors, etc. Examination of the

volatiles might be considered as a strategy enabling products’
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authentication since composition is known to vary widely with

multiple factors involved in agro-production. For example,

depending on the difference in volatiles, milk samples were

classified correctly into groups which were consistent with

the type of forage eaten by the cattle16. Characterization of

volatiles was also highly suitable for varietal discrimination

of hops (Humulus lupulus L.)17 or wines according to varieties18.

Environmental factors such as light, temperature and moisture

status can greatly affect the emission of volatiles, including

the yield and composition of essential oils19,20. Studies also

show that geographical origins of coffee beans21, honeys22,23,

olive oils24, green teas25,cheese26 and many other agro-products

could be discriminated based on the diversity of volatiles.

As far as flavour and taste are concerned, volatiles are

one of the most important influencing factors, especially for

tobacco. Many volatile compounds in tobacco can be trans-

ferred from cut tobacco leaf to smoke by volatilization without

any structural change.

Flue-cured tobacco (Nicotiana tabacum L.) is one of the

most important commercial crops. The major volatile comp-

ounds reported in flue-cured tobacco are neophytadiene,

aromatic ketones, aromatic alcohols, aliphatic acids and

aromatic aldehydes. These compounds usually comprise more

than 90 % of the total volatile compounds and contribute to

the aroma of flue-cured tobacco27. Volatile compounds in
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tobacco are affected widely and deeply by many factors related

to growing area28-30. It is interesting to clarify whether the

geographical origin of tobacco could be discriminated or traced

based on the difference of volatiles and whether geographical

indications of volatiles could be taken as a quality-mark of

flue-cured tobacco.

However, few efforts have been made to identify tobacco’s

geographical origin and cultivar by analyzing volatile com-

pounds. Furthermore, no information exists in the literature

on classification of flue-cured tobacco planted in Sichuan Prov-

ince. In this study we are trying to discriminate the geogra-

phical origin and cultivars of flue-cured tobacco planted in

Sichuan Province according to volatile compounds.

EXPERIMENTAL

Tobacco samples: Tobacco leaves were harvested by hand

and cured in bulk curing barns with the standard three-phase

curing process (including yellowing phase, leaf drying phase

and stem drying phase). A total of 35 flue-cured tobacco

samples (ranked as C3F) were collected after the curing period

from three districts, including Liangshan, Guangyuan and

Yibin. They are located in the south-west, north and south

area of Sichuan Province, respectively, which have different

climatic conditions. Sampling was carried out during October

and November in 2011. The sample group was composed of

six tobacco cultivars, including Yunyan 85, Yunyan 87, Yunyan

97, Honghuadajinyuan, Zhongyan 103 and K326. All infor-

mation about samples is displayed in Table-1.

Sample preparation: Tobacco leaves were dried at 40 ºC

for 6 h and ground into powder. Volatile compounds were

extracted with simultaneous distillation-solvent extraction

(SDE) apparatus. For each extraction, 20 g of tobacco sample,

10 g sodium sulphate and 300 mL ultra-pure water were placed

in a 1 L flask and heated with a boiling water bath, 50 mL

dichloromethane was added to a 100 mL flask heated with 40

ºC water bath and the temperature of the circulating cooling

water system was operated at 8 ºC. Steam distillation was

stopped after 2 h, while solvent extraction was continued for

further 15 min. The extract was concentrated to 1 mL at 10 ºC

using nitrogen-purge apparatus. The concentrated solution was

dehydrated with anhydrous sodium sulphate for at least 12 h,

of which 2 µL was injected into the GC-MS system for analysis.

GC-MS conditions: The auto system Shimaszu QP 2010

GC-MS was employed for the analysis of volatile components.

Low-bleed GC-MS column Rtx-5Ms, (5 % diphenyl/95 %

dimethyl polysiloxane,30 m × 0.25 mm ID × 0.25 µm as used

to resolve the volatiles. In terms of GC temperature progra-

mming, the oven temperature was set at 50 ºC and kept there

for 2 min, then raised to 110 ºC at a ramp of 8 ºC/min and kept

there for 2 min, then raised to 150 ºC at of 3 ºC/min and kept

there for 2 min, then raised to 200 ºC at of 5 ºC/min and kept

there for 5 min and finally raised to 240 ºC at 10 ºC/min and

kept there for 2 min. The carrier gas was helium. Mass spectro-

metry was operated at 230 ºC in electron impact mode (70

eV), scanning from m/z 40-600 in 0.3 s with an 0.2 s scanning

interval time, the temperature of the GC-MS interface was

250 ºC and the voltage of the photoelectric multiplier tube

(PMT) was 200 V.

Validation parameters for the GC-MS method: The

linearity and sensitivity of the method were investigated using

available reference standard phenylethyl acetate, with concen-

trations ranging from 5 to 200 µg mL/L. Each point on the

calibration curve, expressed as peak area, was obtained from

a minimum of three replicates of measurements (RSD < 0.02).

The relationship between the peak area and standard concen-

tration was determined by linear regression with R2 > 0.99.

Semi-quantitative and qualitative of volatile: Data

analysis was performed using GCMS solution (Shimadzu,

JAP). After peak smoothing and aligning of GC spectra, the

quantification of the internal standard was done manually for

each sample, then the peak area was corrected with reference

to the internal standard. Semi-quantitative analysis was based

on the peak area percentage method using GC-MS total ion

chromatograms. Peak area percentage was calculated by

comparing each peak area to the total peak area in the same

sample, without considering calibration factors. GC peaks with

relative peak area exceeding 0.1 % were extracted. Identi-

fication of selected peaks was based on the NIST05.L MS

library (National Institute of Standards and Technology,

Gaithersburg, USA).

Statistical analysis: Comparison of the means was

achieved using a one-way analysis of variance (ANOVA)

using the SPSS 17.0 statistics software (SPSS Inc.). Data was

centered and pareto scaled after importing to SIMCA soft-

ware. Principal component analysis (PCA) and partial least

TABLE-1 

TOBACCO SAMPLES FROM SICHUAN PROVINCE 

No. Geographical origin Cultivar No. Geographical origin Cultivar No. Geographical origin Cultivar 

1 LS Y87 13 YB Y97 25 GY Y85 

2 LS Y85 14 YB K326 26 GY Y85 

3 LS Y85 15 YB HD 27 GY Y85 

4 LS Y85 16 YB K326 28 GY Y85 

5 LS Y87 17 YB HD 29 GY Y85 

6 LS Y85 18 YB HD 30 GY Y85 

7 LS Y87 19 YB Z103 31 GY Y87 

8 LS Y87 20 YB Z103 32 GY Y87 

9 LS Y85 21 YB Y97 33 GY Y87 

10 LS Y87 22 YB K326 34 GY Y87 

11 LS Y85 23 YB Z103 35 GY Y87 

12 LS Y87 24 YB K326 – – – 

Origin: LS-Liangshan district, YB-Yibin district, GY- Guangyuan district Tobacco Cultivar: Y85-Yunyan85, Y87-Yunyan87, Y97-Yunyan97, HD-
Honghuadajinyuan, Z103-Zhongyan103, K326. 
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squares discrimination analysis ( PLS-DA) were performed

with SIMCA-P version 13. PCA was used to overview data

clustering trends and to identify outliers with Ellipse, Hotelling’s

T2 (95 %). PLS-DA was carried out to reveal the relationship

between samples and variables (tobacco volatiles). The leave

out cross validation method was used to test the prediction

classification ability.

RESULTS AND DISCUSSION

A total of 56 volatile compounds were detected with GC-

MS and identified (Table-2) by matching with NIST05.L MS

library (similarity ratio > 80 %). The volatile compounds

covered on average 95.46 % of the total peak area recovered

from the GC spectra. Volatile compounds were semi-quanti-

fied by means of peak area percentage (not shown).

Geographical discrimination of flue-cured tobacco

using volatile compound analysis: Principal component

analysis (PCA) was used to provide an overview of the capacity

of the variables (volatile compounds) to discriminate tobacco

samples from different regions. All data derived from 56 vola-

tile compounds of 35 samples were subjected to a PCA-class

model with geographical origins taken as class ID. In refer-

encing three independent PCA score plots (not shown) for

each sample group from different regions, no samples were

identified as possible outliers. After applying PCA to the raw

data set of 35 samples, four PCs were extracted according to

the NIPALS algorithm (R2X = 0.942, Q2 = 0.547). The percen-

tage of variance explained by each PC was 46.5, 29.5, 11.5

and 6 %, respectively. The PCA-X score scatter plot (not

shown) reveals that they could be classified into three clusters

coincident to the three sampled geographical origins.

Supervised PLS-DA was carried out to reveal the rela-

tionship between volatile compounds and the three clusters.

The initial PLS-DA model was calculated using all 56 volatile

compounds. The R2X and Q2 X values of the PLS-DA models

described the model quality, R2X indicates how well the model

fits and Q2X indicates the model predictability. The first PLS-

DA model was established using two components and revealed

RX2 (cum), RY2 (cum) and Q2 (cum) values of 0.80, 0.62

and 0.54, respectively. The score plots of PLS-DA show corre-

lation of samples and the weights scatter plot of PLS-DA

reveal the relationship between variables and their loading.

The PLS-DA score plot (Fig. 1a) also displays a clear separating

trend in the three classes, according to the sample origins as

well as the PCA-X score scatter plot. However, the PLS-DA

loading plot (Fig. 1b) failed to show the correlation between

variables and sample groups clearly because of the serious

overlap of most variables. To decrease overlap and to improve

the interoperating ability of the PLS-DA loading plot, unim-

portant variables for the PLS-DA were reduced. Variable

importance for the projection (VIP) plot of the PLS-DA (Fig. 2)

displayed the contribution value of each variable and using

the VIP  > 1, nine variables were judged as being important.

PLS-DA was performed again with the nine variables (far

left in Fig. 2) with VIP > 1. In the PLS-DA loading plot, X-

variables situated in the vicinity of the dummy Y-variables

have the highest discriminatory power between the classes.

Based on the loading (Fig. 1d) and score plots (Fig. 1c) of the

TABLE-2 

TENTATIVELY IDENTIFIED VOLATILE COMPOUNDS IN FLUE-CURED TOBACCO FROM SICHUAN 

No. Compound RT No. Compound RT 

1 2-Butylfuran 6.446 29 Cedrol 26.880 

2 2,3-Dihydro-benzofuran 7.251 30 Megastigmatrienone C 27.084 

3 6-Methyl-2-heptanone 8.326 31 Megastigmatrienone D 27.437 

4 Benzyl alcohol 10.471 32 4-(3-Hydroxy-1-butenyl)-3,5,5-trimethyl-2-cyclohexen-1-one 27.958 

5 Benzeneacetaldehyde 10.776 33 Heneicosane 28.877 

6 Acetophenone 11.410 34 Heptadecane 29.272 

7 Nonanal 12.342 35 Norphytane 29.432 

8 Phenylethyl alcohol 12.645 36 Palmitaldehyde 29.765 

9 2,6,6-Trimethyl-2-cyclohexene-1,4-dione 13.481 37 Hexa-hydrofarnesol 30.155 

10 Nonanoic acid 16.434 38 Tetradecanoic acid 30.990 

11 Indole 17.360 39 Isopulegyl acetate 31.230 

12 4-Ethenyl-2-methoxy phenol 17.850 40 Anthracene 31.930 

13 Farnesol 17.992 41 Phytane 32.336 

14 Hexahydrofarnesol 18.783 42 Neophytadiene 33.305 

15 Nicotine 18.865 43 Hexahydrofarnesyl acetone 33.431 

16 Solanone 19.289 44 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 33.860 

17 Hexahydropseudoionone 20.412 45 3,7,11-Trimethyl-2,10-dodecadien-1-ol 34.179 

18 Myosmine 21.276 46 Farnesyl acetone 35.518 

19 Geranyl acetone 21.950 47 Palmitic acid, methyl ester 35.632 

20 Nicotine-N'-oxide 22.859 48 3,7,11,15-Tetramethyl-2-hexadecene 35.856 

21 2,4-bis(1,1-Dimethylethyl) phenol 23.776 49 Hexadecanoic acid 36.718 

22 6-Methoxy-3-methylbenzofuran 24.171 50 3-(4,8,12-Trimethyltridecyl)furan 37.037 

23 Dihydroactinidiolide 24.679 51 17-(Acetyloxy)-(4β)-kauran-18-al 41.430 

24 Megastigmatrienone A 25.501 52 β-4,8,13-Duvatriene-1,3-diol 42.095 

25 Megastigmatrienone B 26.018 53 Phytol 43.090 

26 Hexadecane 26.322 54 α-4,8,13-Duvatriene-1,3-diol 43.465 

27 Diethyl Phthalate 26.416 55 Linolenic acid, methyl ester 44.503 

28 Myristaldehyde 26.789 56 Phthalic acid, dioctyl ester 64.193 

RT: Retention time. 
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Fig. 1. PLS-DA score plot and loading plot

second PLS-DA, it is easy to find that Var 42 is the most

important variable to discriminate YB samples; Var 48, Var

 46 and Var 50 are the most important three variables to discri-

minate GY samples; Var 15, Var 49, Var 51, Var 52 and Var

54 are the most important variables for discriminating LS

samples.

Contribution scores and the analysis of variance (ANOVA)

of the variables of the second PLS-DA are shown in Table-3,

displayed on the left and right sides, respectively. The contri-

bution scores of PLS-DA show the weighted difference

between certain groups and the average of three groups. It

also indicates which variables in a group deviate most from

the group average. The signs of contribution scores (positive

= higher and negative=lower content than average) indicate in

which direction the variables deviate. ANOVA highlighted

statistically significant differences (p < 0.05) of the nine vari-

ables among the sample groups produced in three geographical

areas. This can explain why they are so important in discrimi-

nating geographical origin.

Validity and reliability of the second PLS-DA models were

tested by permutation tests and analysis of variance testing of

cross-validated predictive residuals (CV-ANOVA). Permutation

tests were performed with 20 random reclassifications. The

permutation plot displays the correlation coefficient between

the original y-variable and the permuted y-variable on the

x-axis versus the cumulative R2 and Q2 on the Y-axis and draws

the regression line. The criteria for validity of PLS-DA models

TABLE-3 

CONTRIBUTION SCORES AND ANOVA OF VARIABLES IN THE SECOND PLS-DA 

Var ID 

Contribution ANOVA 

LS YB GY 
LS YB GY 

Mean SD Mean SD Mean SD 

15 0.9601
*
 -0.5342 -0.4077 3.70a 2.92 0.29b 0.29 0.43b 0.64 

42 -1.2915* 1.4103* -0.0036 79.41c 5.17 91.82a 1.37 85.07b 1.96 

46 -0.2268 -0.3437 1.4474* 0.23a 0.04 0.14b 0.04 0.22a 0.06 

48 -0.2120 -0.1503 0.9157* 0.43b 0.20 0.48b 0.33 1.20a 1.09 

49 0.9658
*
 -0.5373 -0.4114 1.16a 0.97 0.05b 0.05 0.09b 0.07 

50 -0.0619 -0.3796 1.0058* 0.61b 0.19 0.391b 0.16 0.97a 0.61 

51 1.3004* -1.0635* -0.1128 2.21a 0.53 1.01c 0.26 1.39b 0.30 

52 0.5222 -0.9935* 0.4226 2.69a 1.15 0.96b 0.48 2.67a 0.87 

54 0.7085 -1.0212
*
 0.1484 4.53a 2.04 1.49b 0.65 3.82a 1.10 

In the left side of Table-3, variables in one column (LS, YB or GY) marked with “*” are discriminating variables to identify samples’ geographical 
origin. In the right part of Table-3, variables in one row with different letters are statistically different (p < 0.05), a > b > c (= significantly different 

contents). standard deviations (SD). 
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are all blue, Q2-values to the left are lower than the original

points to the right or the blue regression line of the Q2-points

intersect the vertical axis (on the left) below zero. Fig. 3 indicates

that all of the second PLS-DA models with nine variables have

good fitness and predictability. Analysis of variance of seven-

fold cross-validation predictive residual (CV-ANOVA) show

the P = 1.84612e-006 < 0.05. The misclassification test (Table-

4) indicates that the second PLS-DA can discriminate tobacco

samples from the three districts with a correct classification

rate of 91.43 %. This supports the view that environmental

conditions (climate, rainfall, soil quality) and culture techno-

logy are closely related to geographical origin, which directly

affect the character of volatiles31.

TABLE-4 

MISCLASSIFICATION TEST OF THE SECOND PLS-DA 

Result 
Origin 

Sample 
members Correct (%) LS YB GY 

LS 12 83.33 10 2 0 

YB 12 100 0 12 0 

GY 11 90.91 1 0 10 

Total 35 91.43 11 14 10 

Note: Fishers prob. = 3.1e-012. 

 
Variety discrimination of flue-cured tobacco using

volatile compound analysis: In this study, all samples belong

to six varieties, respectively, with the sample numbers ranging

from 2 to 11. The score plot of PCA to determine primary

observation of the six varieties failed to reveal separation

between varieties (Fig. 4). Moreover, the PLS-DA model could

not be established with SIMCA due to the fact that no signi-

ficant principle component could be extracted. Considering

that samples from Liangshan and Guangyuan are very suitable

for analyzing the difference in volatiles between Y85 and Y87,

further attempts to detect the difference between Y85 and Y87

samples on volatiles by OPLS-DA was carried out, because

both of them have six samples of Y85 and five or six samples

of Y87. However, no predictive components could be extracted

from the Liangshan and Guangyuan samples. Therefore, no

volatile could be identified as a useful characteristic to discri-

minate tobacco varieties in this study.

Conclusion

Volatile profiling based on GCMS spectra was used to

analyze the differences among tobacco samples extracted from

three districts with the aim of finding markers useful for iden-

tifying geographical origin. The results demonstrate that a

Fig. 2. VIP analysis on 56 variables of the first PLS-DA. Note: column marked in red represents variables with variable influence of projection (VIP) values

exceeding 1
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Fig. 4. PCA-X score plot of six tobacco varieties

combination of GCMS and PLS-DA multivariate analyses

allows comparisons of overall volatile fingerprints and that

this technique can be applied to identify differences between

tobacco samples.

Distinct separations between tobacco samples from three

districts were observed in chemometric analyses using PCA

and PLS-DA. Nine volatile components were selected as

candidate biomarkers that could be used to quickly and easily

differentiate tobacco samples. However, no volatile compo-

nent was selected as a biomarker to identify tobacco varieties

in this study. In summary, this study demonstrates that GCMS-

based volatile fingerprinting is a useful tool for distinguishing

origins of tobacco samples, coupled with multivariate statistical

analysis. The reasons for the differences in volatile profiles in

tobacco leaves sampled from different geographical origins

are not fully understood, and further investigations are needed.
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