
INTRODUCTION

In a living cell most of the intracellular activities are due

to genes and protein level chemical modifications at different

instances. Chemical reactions are the working language of

biological modeling which utilizes fundamental ideas of physical

chemistry, kinetics, equilibrium and connect to thermody-

namics. By doing so, they provide a unifying notion by which

arbitrarily complex biochemical processes are expressed to

gain insights about the process and dynamics either quanti-

tatively or qualitatively1. Information and complexity are the

buzz words of modern network biology. Mathematical mode-

ling and simulation approaches can provide us with mathema-

tically well-founded and tractable interpretations when it

comes to investigating complex interaction networks2. This

introductory review is an attempt to elucidate how such basic

chemical kinetics based principles are utilized in quantifying

biological processes with a few case based examples. This is

merely an attempt to elucidate the developments in this domain

in no way a complete account.

When the level of experimental and clinical data accumu-

lates in an ever increasing rate in the past two decades with the

advancements that resulted due to the successful development
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of high throughput experimental techniques post human genome

project, it is essential to make sense of the accumulated data

to better understand the biological characteristics. To gain a

better understanding of the disease mechanisms and for pheno-

typic characterization of a disease network it is essential to

combine the sparse experimental data available from several

individual cell and molecular biology experiments. In such

studies appropriate chemical kinetics principles are utilized

to describe the underlying molecular interactions mathema-

tically3-6. There are several introductory reviews that guide the

entire process of data collection to model development and

analysis7-11. With nature’s conception and publication of a dedi-

cated open access journal, CPT: Pharmacometrics and Systems

Pharmacology (http://www.nature.com/psp/index.html) since

September 2012 evidently shows the momentum that this field

has gained in the past decade and the amount of research that

is done in this emerging research area. There are evidences

where such approach has reduced the number of experiments

that is essential to be performed11. The approaches towards

modeling and analysis of intricate biological and disease

interactions are illustrated in this review. Wide applications

for such approaches are found in systematically investigating

several complex biological phenomena.
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Kinetic approaches for modelling: The preliminary step

to systematically model biological systems involves develop-

ment of molecular interaction maps from existing experimental/

clinical data which is then transformed into appropriate

mathematical formulations and later solved using appropriate

computational tools. The flow chart described in Fig. 1 indicates

the strategy. Various model parameters are extracted from the

available experimental data through curve fitting. In a few cases

where the pre-existing model parameter does not fit the model

output, could indicate an existing gap in the information related

to molecular interactions which could also lead to new hypo-

thesis and experimental design. In a few cases the strategy

involves repeating the above steps to get a better model which

will be able to provide more insights.

Literature curation

Existing models Experimental/climical data

Molecular interaction map

Model formulation

Michaelis menten
kinetics

Mass action kinetics Hill equation

Parameterization identification and simulation

Model analysis and Conclusions

Fig. 1. Strategy followed in chemical kinetics based mathematical modeling

of biological systems

Network development: Network or wiring diagram deve-

lopment in systems biology begins with known molecular

interaction between various regulatory components deciphered

from the genetics and molecular biology experiments. Similar

networks in previously published models can serve as know-

ledge base with manual curation to a greater extend to confirm

the regulatory information and to update the gaps in network.

Whenever there is a lack of information/connectivity is observed

a few interactions were hypothesized based on other eukaryotic

model organisms which is a very commonly followed strategy

in modeling and quantification of biological signal processing

systems8,12,13.

Kinetic representations: In biological systems, signal

transmission occurs mostly through the following mechanisms:

(i) protein-protein interactions (ii) enzymatic reactions such

as protein phosphorylation dephosphorylation cycles (iii) protein

degradation and (iv) through intracellular messenger proteins.

Basic chemical reaction schemes such as mass action and

Michaelis-Menten formulations can be used to represent all

reactions4,5. A typical species that undergoes reversible protein

phosphorylation dephosphorylation reaction can be depicted

as:

S S–P
Kinase

Phosphatase

Mass action kinetics: Mass action kinetics represents an

elementary kinetic principle used to describe rate of reactions

based on stoichiometry and the concentrations of the reactants.

For a generic reaction of the following type,

n1X1 + n2X2 + …… + nmXm → Products

the kinetics can be represented as

-rXi = k[X1]n1 [X2]n2….. [Xn]nm (1)

where ‘k’ is the rate constant and ‘[Xi]’ indicate the molar

concentration of the component based on cell volume. Eqn. 1

shows that the rate of chemical reaction is proportional to the

product of the concentrations of the reactants.

Michaelis Menten kinetics: Michaelis Menten kinetics

is commonly employed to represent rates of enzyme catalyzed

reactions. This form of mathematical representation can be

used for activation and inhibition of regulators and it captures

the substrate saturation nonlinearity. For an enzyme catalyzed

reaction of the type,

ProductS
E→

the Michaelis Menten equation takes the form,

]S][K[

]S[
]E[kr

5.0

Product =− (2)

where, [S] and [E] represents the substrate and enzyme

concentration, k and K0.5, respectively represents the Michaelis

Menten rate constant and the half saturation constant of the

substrate. For a continuous change in the input signal, the

output signal increases and later saturates in a hyperbolic

fashion (dashed line Fig. 2).
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Fig. 2. Response observed for Michaelis Menten (dashed line) and Hill

type (dotted and solid lines) kinetic equation formulation. Note

that for increasing ηH the response varies from subsensitive (ηH =

0.5), hyperbolic (ηH = 1) to unltrasensitive (ηH = 2, 3, 4 & 5)

Hill equation: The Hill equation is used to quantify ultra-

sensitive or sub sensitive response which arises due to allosteric

modification of proteins. It is utilized to estimate the fold

change in the output/response for the given input4,14. The Hill

equation is given by,

H

H

IK

I
f

5.0

η

η

+
= (3)

where ‘f’ represents the fractional activation of output response

with varying input ‘I’ and ηH represents Hills coefficient. The
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input signal required for 50 % activation of the regulator is

termed as the half saturation constant (K0.5). Depending on

the value of Hill coefficient, the shape of the stimulus response

curve changes from hyperbolic to sigmoidal, indicating the

measure of steepness of the curve. The Hill coefficient is com-

puted based on the fold change in input stimulus required to

take the response from 10 % activation to 90 % activation.


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
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
=η
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H

I

I
log

)81log(

(4)

For a response with a Hill coefficient equal to 1, an 81 fold

change in input is required to reach 90 % of maximum response,

which represents a typical hyperbolic Michaelis Menten

response (dashed line in Fig. 2). For a Hill coefficient greater

than 1, the response tends to become sigmoidal, indicating

the sensitive nature of the dose response, which is defined as

ultrasensitive response (solid black line with ηH = 5 in Fig. 2).

The response curves that are less steeper than that of Michaelis

Menten curve are termed as sub-sensitive responses (dotted

line in Fig. 2) in which case ηH < 1. The input-output response

can be analyzed for activating a pathway/regulator by

increasing the input concentration (switching on) or for deacti-

vating a pathway by decreasing the input concentration

(switching off). A system that is characterized by the same

dose-response curve, irrespective of whether the dose increases

or decreases is termed to be monostable. Mathematically, this

implies that for a given input signal, the system has only one

stable steady state that can be attained.

It is possible to observe such highly sensitive sigmoidal

responses in biological systems at several instances. The classical

work by Goldbeter and Khosland characterizes such sigmoidal

response which arises due to reversible covalent modification.

Such modification may occur due to effector/ligand biding to

activate its substrate or due to phosphorylation dephosphory-

lation cycles15-17. Emergence of biochemical switches due to

molecular level chemical interactions can be explained through

Goldbeter-Koshland Equation which describes a steady-state

behaviour or equilibrium characteristics for a two state biolo-

gical system such as phosphorylation cycle. It is widely utilized

to characterize biological systems.

Metabolic engineering: Individual reactions of large

central metabolic pathways can be modeled using such elemen-

tary kinetic principles to improve cellular properties through

the modification of specific biochemical reactions or the intro-

duction of new ones, with the use of recombinant DNA

technology. This is done with the notion that metabolic fluxes

as determinants of cell physiology and measures of metabolic

control18,19. Application of such methods enables extension of

existing pathways to obtain new chemical products, alter

posttranslational protein processing and degrade recalcitrant

wastes18. There are several sub branches, which are differen-

tially utilized for several bio-engineering studies which

includes, (i) Flux balance analysis, where the flux through

individual reactions are related to the total flux of the metabolic

pathway and (ii) Metabolic control analysis which incorporates

rate kinetics information along with flux information to

precisely quantify the change in entire pathway when a single

enzyme or metabolite is perturbed19.

Modelling approaches: The type of equations to be used

depends on the biological questions under study. For gene and

protein regulatory network interaction studies it is appropriate

to use ordinary differential equations (ODEs ). In the case of

ordinary differential equation modeling of cell signaling

processes, it is reasonable to begin with continuum approxi-

mation and assume that the system is well mixed20,21. For

example the following equation represents the general form

of the ordinary differential equation for conservation of mass

for any component X of a protein signaling based molecular

interaction map,

]MI[k])x[K/]x])([E[kk(]x[kS
dt

]x[d
mmebdx ±++±−=  (5)

where, [x] - concentration of protein ‘x’; Sx - rate of synthesis

of protein ‘x’; kd - rate constant of degradation; kb - rate of

synthesis at basal level; ke - rate of synthesis in the presence of

enzyme; Km - half saturation constant; [E] - concentration of

enzyme E; MI – formation or dissociation of complex ; km -

rate of complex formation or dissociation.

A set of such equation similar to equation (5) describing/

representing a complex signaling pathway or disease network

can be solved using the tools listed in the later section22. Most

of the mathematical models available in systems biology of

cell signal processing literature adopt similar formulations to

perform dynamic simulation of the systems of interest2,22-24.

Such formulations can only explain or help in simulating

temporal scale/ order of the processes that occur in a biological

system. To simulate spatial influence partial differential

equation (PDE) based formulations that accounts for the spatial

dynamics along with time through a diffusion component are

employed25 and the general form of this reaction diffusion

equation is given below:

)x(vxD
t

]x[
ppp

p
−∆=

∂

∂
(6)

where, D represents the diffusivities, xp the active form of the

component any component x which together is assumed to

form a constant pool of both the form of these components

(which may not be true for a the actual system); ∆xp represents

the change in this concentration pool due to diffusion; vp the

rate of distribution of the component in the compartment of

the systems of interest.

Formulations suggested by the eqn. 6 are utilized to

simulate reaction that occurs in different compartments of

biological system and to describe developmental processes of

biological system which are space specific such as growth

pattern formation25-27. Turing for the first time demonstrated

chemical influence of morphogenesis by utilizing similar

formulation28.

Stochastic formulation based approaches are utilized when

the details related to number of molecules and the noise of the

systems of interest are investigated to study their impact on

the overall systems behaviour6,29. There are models which

incorporates different noise to study stochastic influence30. In

most cases Gillespie algorithm based chemical master

equations are formulated to simulate and analyze stochastic

characteristics of the problem under investigation6,31-33.
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Model parameterization: Parameter optimization is a

critical and challenging step for these types of modeling where

availability of time course data is sparse, yet based on known

experimental and qualitative information one can derive the

parameters based on optimization techniques8. Comparing the

model simulation results to experimental data is difficult

because most of the experimental data is qualitative rather than

quantitative34. Different approaches utilized for parameter

estimation of specific biological processes are focus for several

reviews8,35-38.

Model simulation and predictions: The next step after

the formulation of the model as interdependent equations and

parameter identification is to study dynamical and spatio-

temporal information of the system of interest through simu-

lations. Various chemical kinetics based approaches described

in the previous sections can be directly utilized to formulate

the models. Models thus formed can be simulated using several

numerical techniques software such as MATLAB and Mathe-

matica. Apart from direct application of numerical techniques

there are built-in tools available which can directly be

employed to simulate and make unique predictions. For those

with limited familiarity with solving mathematical equations

there are numerous dedicated tools available to aid in solving/

simulating the problem/systems of interest. The details of

which are documented in the following section. Relevant

knowledge about the system is perquisite to devise testable

predictions.

Modelling tools: There are several commercial and open

source tools available to solve the developed models. There

are also reviews which provide details on tools that are

available for diverse mathematical modelling processes8,26.

Table-1 below lists some of the dedicated tools and their

applications with reference and web link for further reference.

Most of these tools are open source software with the

user manuals available in the respective webpage to support

the initial stages of exploration. Apart from these tools

described there are introductory articles that clearly demons-

trate how biochemical pathways are modeled mathematically

using MATLAB generated ready example programs6. Similar

tools and methodologies also have applications in the field of

emerging field of synthetic biology where the goal based

biological system developed is primarily tested with computer

simulations before building/synthesizing the complete

organism52.

Model analysis: Model prediction itself serves as a

verification tool to check the model is able to predict and explain

the existing biological data8,20,22. Specific parametric influence

and the robustness of the model for parameter perturbations

can be utilized to observe how the overall dynamics or pheno-

typic characteristics of the system under investigation get

affected52. Such quantifications are done both locally by

perturbing one or two regulators and globally by systematic

perturbation of the system under investigation. For oscillatory

systems such as circadian rhythm and cell cycle regulation

periodic sensitivities Sτ captures the change in the cell cycle

period τ upon change in the parameter P and SAi captures the

change in the amplitude (A) or state (i) for the change in

parameter P53.

P
S

∂

τ∂
=τ (7a)

TABLE-1 
DEDICATED TOOLS AVAILABLE FOR MATHEMATICALLY MODEL AND SIMULATE BIOLOGICAL SYSTEMS 

Tools Application Web Link 

Gepasi  Biochemcial kinetics simulator to model dynamical and steady state biological 
processes, also utilized for parameter optimization39,40 

http://www.gepasi.org/ 

Cell designer  A modelling and a structured network editing tool for biological networks41,42. http://www.celldesigner.org/ 

Jigcell  A software modeling tool to build model and simulate biochemical regulatory 
networks. 

http://jigcell.cs.vt.edu/ 

PET A graphical user interface based parameter estimation toolkit to estimate rate 

constants of molecular network models, that fit experimental data36. 

http://mpf.biol.vt.edu/pet/ 

Simulink A block diagram environment for multidomain simulations in MATLAB. http://www.mathworks.in/products/simulink/ 

CompuCell3D An open source modeling environment and pde solver, primarly used to study 

cellular behavior. Also used to model material and tissues in biology. 

http://www.compucell3d.org/ 

E-Cell Modeling and simulation environment for biochemical network43. http://www.e-cell.org/ 

SBML  Systems Biology Markup Language (SBML), a free tool for computational 
modelling of biological processes such as metabolism and cell signaling. This 

also supports interchangeable formats for many other tools44. 

http://sbml.org/Main_Page 

Flux P  Automated flux analysis tool to perform custom specific analysis45.  

Kappa  Rule based modeling tool for biological system46. http://www.kappalanguage.org/ 

Pajek For large interaction networks ‘’ and graph theory based random graph. http://pajek.imfm.si/doku.php 

Cytoscope  Open source network data integration and visualization tool47. http://www.cytoscape.org/ 

Copasi COPASI is a software application for simulation and analysis of biochemical 
networks and their dynamics48. 

www.copasi.org/ 

Madona  Modelling and simulation tools for dynamical systems. http://www.berkeleymadonna.com/ 

STOCHSIM For modelling stochastic biological processes49.  

Virtual cell  Open source software simulation environment for Satio-temporal modeling of 
cell signal processes50. 

http://vcell.org/ 

Smoldyn 

 

A spatio stochastic simulator, utilized to perform cell-scale biochemical 

simulations. Runs along with Virtual Cell.  

http://www.smoldyn.org/ 

XPPAUT Simulate cell signaling networks based model and numerical analysis tool.  http://www.math.pitt.edu/~bard/xpp/xpp.html 
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P

A
S i

Ai
∂

∂
= (7b)

where, Sτ - Periodic sensitivity coefficient; P - the perturbation

in parameter; SAi - Amplitude sensitivity; Ai - Measure of ampli-

tude change and i gives the state with respect to the perturbed

parameter.

For systems which are not oscillatory, response to the

parameter change or perturbation cab be estimated using a

formulation similar to eqn. 7b. There are examples in literature

which explicitly utilizes such methods to analyze the parameter

sensitivity to characterize their robustness and rank54.

Applications: Most of the studies reported in literature

based on the modeling approaches and tools reviewed in this

article have implications in identifying potential drug targets

and in understanding the emergent properties of complex

biochemical network interactions and network dynamics. In

this section some of the crucial cases where such approaches

were employed successfully for medical applications and for

characterization of the complex disease networks are elucidated.

Potential drug target identification: Trypanosoma

brucei is a unicellular, eukaryotic parasite which lives in the

host bloodstream causes African sleeping sickness in humans

and livestock. No storage mechanism for carbohydrates and

central metabolic pathways such as krebs cycle or oxidative

phosphorylation exist in this organism it singly depends on

glycolysis for its supply of ATP. Differences between host and

parasite energy metabolism are eagerly sought after as potential

targets for antiparasite chemotheraphy55. Study by Bakker

et al.56 which aimed at finding the limiting step of glycolytic

flux in this parasite identified potential targets for antitrypano-

somal drugs through metabolic flux analysis. Their primary

goal was to identify the steps that need the least inhibition to

achieve a certain inhibition of the glycolytic flux, so as to avoid

the inhibitor binding to the host glycolytic pathway. They found

that the glucose transporter appeared to be the most promising

target, followed by aldolase (ALD), glycerol-3-phosphate

dehydrogenase (GDH), glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) and phosphoglycerate kinase. A more recent

study using dynamic modeling investigates the uncertain

parameter fluctuation effects due to lack precise experimental

data. They also address the fragilities of the model due to the

accumulation of 3-phosphoglycerate and/or pyruvate57.

Cancer: The emerging picture of molecular cell biology

experiment based data and information on cancer is over-

whelmingly complex which involves molecules out of many

parallel signal transduction pathways which in-turn are

controlled by multiple factors. The action of regulatory circuits,

cross-talk between pathways and the non-linear reaction

kinetics of biochemical processes complicate the under-

standing and prediction of the outcome of such intracellular

signaling. In addition, interactions between tumor and other

cell types give rise to a complex supra-cellular communication

network58. They argue that if cancer is such a complex system,

one aspect is to recognize, where the essence resides, i.e. to

recognize cancer as a systems biology disease to provide

answers to some of the pertinent questions related to cancer

drug target identification and to rationalize therapies. They

also show that the architecture of a signaling network is

important for determining the site at which an oncologist

should intervene58.

Venkatarasubramanian et al.59 developed a tumor growth

model with the hypothesis that quantifying the interactions

between drugs and tumor microenvironments could be used

to identify more effective anticancer strategies. Their mathe-

matical model integrated intracellular metabolism, nutrient and

drug diffusion, cell-cycle progression, cellular drug effects and

drug pharmacokinetics and they assumed drug cytotoxicity to

be cell-cycle phase specific and progression through the cell

cycle to be dependent on ATP generation. The model consisted

of a coupled set of nonlinear partial differential, ordinary

differential and algebraic equations which were solved using

differential-algebraic equation (DAE) solver DASPK 2.0. The

therapeutic implications that emerged from such a simulation

study concludes that (1) monolayer cultures are inadequate

for accurately determining therapeutic effects in vitro, (2)

decreasing the diffusivity of paclitaxel could increase its

efficacy and (3) measuring the proliferation fraction in tumors

could enhance the prediction of therapeutic efficacy. This is

one such example where a combination of approaches pres-

cribed in this review is utilized effectively.

A systematic framework was adopted to predict the

sigmoidal transition of effective dose response, maximal effect

(Amax), half maximal activity (EC50) and the concentration at

which the drug response reached an absolute inhibition of 50 %

(IC50) of 24 compounds on 470 cell lines was generated inview

to aid the clinical trials with robust preclinical model systems.

The mail goal of the study was to describe a large (encyclo-

pedic) cell line collections based experimental and preclinical

modeling study for cancer: Cancer Cell Line Encyclopedia

(CCLE). Both known and novel biomarker response and sensi-

tivity was demonstrated for several cancel cell lines collected

in this database60. Other articles published in the same issue

of ‘Nature Outlook-Physicist take on Cancer’ highlights how

diverse mathematical modelling approaches have successfully

been developed and utilized to predict tumor growth rate, cell

migration rates, right drug target, right combination of drugs,

optimal dose and sequence.

Quantification of cell signaling pathways: Towards

understanding the disease mechanism several cell signaling

pathways are characterized using the approaches reviewed in

this section. Biological signal processing systems consists of

protein - protein interactions which act together and converge

to activate or inhibit a gene product which can bring in the

essential response to the stimuli. The typical interactions

observed in such process include direct interaction of one or more

proteins, enzymatic or covalent modification, phosphorylation-

dephophorylation cycles and gene-protein (transcription

activator/inhibitor) interaction. Detailed characterization and

properties of such commonly observed components of network

modules are the focus of several reviews3,4,61,62.

The negative interaction mediated regulation between the

tumor suppressor p53 and the oncogene Mdm2 has been

widely investigated though kinetic modeling based computa-

tional frameworks23,24. In mammalian systems under DNA

damage, activation of p53 executes cell cycle arrest and initiates
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DNA repair. If irreparable when under excessive damage, the

p53-mediated apoptotic pathway gets activated to bring about

the cell death. Mathematical modelling demonstrated the effect

of reducing the gene copy number of the p53 which might

result in tumor formation by triggering proliferation of cells

containing damaged DNA63. Geva-Zatorsky et al.64 along with

experiments used modeling framework to elucidate the

oscillatory nature of this network and to characterize the

possible source of variability in oscillation as low-frequency

noise in protein production rates, rather than noise in other

parameters such as degradation rates. Study by Batchelor et al.65

emphasizes the importance of collecting quantitative dynamic

information at high temporal resolution for understanding the

regulation of signaling pathways and opens new ways to mani-

pulate p53 pulses to ask questions about their function in

response to DNA damage. Apart from the negative interaction

between p53 and Mdm2 the upstream signaling kinases, ATM

and Chk2 and their negative interaction through Wip1 contri-

butes in maintaining the uniform shape of p53 pulses. They

propose that p53 pulses are the result of repeated initiation by

ATM which is re-activated by persistent DNA damage.

Tumor necrosis factor (TNFα) is a potent pro-inflamma-

tory cytokine that plays an important role in immunity and

inflammation, in the control of cell proliferation, differentiation

and apoptosis. Simulation study by Cho et al.2 shows quali-

tative validation of the interactions in comparison with experi-

mental results for this pathway. Their approach is also applicable

to further predict the signaling behaviour of NF-κB in a

quantitative manner for any variation of the ligand, TNFα.

NF-κB is a principal transcription factor, is an exquisite example

of how cellular signaling pathways can be regulated to produce

different yet specific responses to different inflammatory

insults. Mathematical models, tightly linked to experiment,

have been instrumental in unraveling the forms of regulation

in NF-κB signaling and their underlying molecular mecha-

nisms66. This perspective article also provides a detailed com-

parative account of various models and their key contributions.

Interconnectivity and the cross talk between p53, TNFα and

NF-κB pathways is the topic of interest for several mathe-

matical modelling studies67-69. These are the key regulators

which are identified to have lost their crucial controlling and

regulatory decision making ability due to mutations in several

cancer and tumors.

Signal transduction pathways control cellular responses

to stimuli, but it is unclear how molecular information is

processed as a network68. Use of mathematical models there-

fore not only helps in better understanding of the governing

signaling networks through quantifications, it is also possible

to develop prognostic strategies for several complex diseases

like cancer70. The revolutionary modern biology that aims to

design organisms with specific/desired properties relies on

detailed chemical kinetic analysis to a greater extend before

the actual synthesis51.

Conclusion

To understand the fundamental principles governing

biological systems which consist of complex network inter-

action at multiple levels, it is essential to have interdisciplinary

biochemical kinetics, mathematics, physics and computational

tools based combinatorial approach. The current review eluci-

dates this through documenting the methods adopted, appro-

aches and tools utilized commonly and through a few specific

case studies based on successful examples reported in litera-

ture. Other than these well established methods and tools there

are more avenues to create accurate problem specific innovative

approaches. Comparing to the huge amount of critical experi-

ments that needs to be done to understand the disease inter-

action networks to identify critical drug targets mathematical

model based approaches are less expensive and more effective.

Complementary approach of mathematical modeling along

with well designed experiments is generally prescribed for

more accurate understanding.
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