

ASIAN JOURNAL OF CHEMISTRY

ASIAN JOURNAL OF CHEMISTRY

REPORT OF CHEMISTRY

RE

https://doi.org/10.14233/ajchem.2025.33254

Tunable Blue-Yellow Emission in LaInO₃:Bi³⁺,Dy³⁺ Phosphors *via* Polyol Synthesis for Advanced LED Applications

A. Ganesh^{1,*,0}, K. Suresh^{1,0}, K. Sujatha^{2,0} and B.V. Naveen Kumar^{3,0}

Received: 23 December 2024;

Accepted: 10 March 2025;

Published online: 29 March 2025;

AJC-21949

The polyol synthesis method was employed to prepare LaInO₃ perovskite phosphors doped with Bi³⁺ (x = 1, 3, 5 at.%) and co-doped with Dy³⁺ (y = 1-5 at.%). The X-ray diffraction (XRD) confirmed the formation of a pure orthorhombic LaInO₃ phase in annealed samples. Morphological analysis revealed spherical agglomerates with some irregularities, ranging in size from 60 to 90 nm. The reduction of energy band gap on doping ions into lattice using DFT studies. The energy-dispersive spectroscopy (EDS) confirmed the successful incorporation of Bi³⁺ and Dy³⁺ ions into the LaInO₃ lattice. The photoluminescence (PL) studies demonstrated that Bi³⁺-doped LaInO₃ exhibited a broad blue emission peak at 432 nm due to the ${}^{3}P_{1}\rightarrow{}^{1}S_{0}$ transition of Bi³⁺ ions. On the other hand, LaInO₃ doped with Dy³⁺ exhibited distinctive emissions at 482 nm (blue) and 584 nm (yellow), which correspond to the ${}^{4}F_{9/2}\rightarrow{}^{6}H_{15/2}$ and ${}^{4}F_{9/2}\rightarrow{}^{6}H_{13/2}$ transitions of Dy³⁺ ions, respectively. The optimized sample composition is found to be LaInO₃: 3 at.% Bi³⁺, 3 at.% Dy³⁺ demonstrated enhanced emission intensities due to energy transfer from Bi³⁺ to Dy³⁺ ions making it a promising candidate for advanced LED applications.

Keywords: Oxide, Perovskite, Photoluminescence, WLED, Energy transfer.

INTRODUCTION

A significant volume of investigation has focused on the development of single-phase white luminescent materials, due to their crucial functions in white light emitting diodes (WLEDs) and display technologies [1-5]. In this context, the oxide-based materials have demonstrated remarkable luminescent properties, a significant threshold for optical damage, as well as exceptional chemical and thermal stability [6-10]. The unique structural features and fascinating luminous capabilities of the narrow bandgap (2.2 eV) semiconducting compound LaInO₃ have attracted a lot of attention, especially for uses in solid-state lighting [11]. Many researchers have made their investigations by doping with rare earth dopants as activator ions, which are fascinating since they glow brightly in the visible and near-infrared ranges [12-15].

White light emitting diodes (WLEDs) can be produced by utilizing Dy³⁺ activator ions, which are abundant in the yellow and blue regions. Nevertheless, phosphors activated by Dy³⁺

ions exhibit very low light efficiency due to their emissions. The transfer of energy from sensitizers to activators enhances the luminescence efficiency and intensity of the activator ion. The luminous effectiveness of Dy³⁺ ions within inorganic host materials is enhanced by co-doping Bi3+ ions, according to numerous research [2-5]. The emission of Bi3+ ions exhibits a broad spectral range covering blue and green regions, with the peak intensity in the blue wavelength depending on the host lattice. This behaviour is significantly influenced by environmental factors, including covalence, coordination number and site symmetry, which affect the outer $6s^2$ electronic configurations of Bi3+ ions. Significant absorption is observed during the transitions from ${}^{1}S_{0}$ to ${}^{3}P_{1}$ and ${}^{1}P_{1}$, suggesting that activator ion emission intensity could be enhanced through efficient energy transfer [16,17]. Furthermore, the overlap between emission (sensitizer) and excitation (activator) constitutes a significant prerequisite for effective energy transfer.

Based on our interest in the perovskite-based single-phase materials for white light applications, in this study, phosphor

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

Department of Humanities & Basic Sciences, G. Pulla Reddy Engineering College (Autonomous), Kurnool-518007, India

²Department of Physics, V.V. Giri Government Degree Kalasala, Dumpagadapa (Affiliated to Adikavi Nannaya University), Akividu-534235, India ³Department of Physics, University of the Free State, Bloemfontein 9300, South Africa

^{*}Corresponding author: E-mail: ambaliganesh85@gmail.com

powders of LaInO $_3$ co-doped with Bi $^{3+}$ and Dy $^{3+}$ were synthesized and characterized using the polyol technique. The effects of this co-doping on the powder properties are examined. In regard to its use in white light luminescence, a thorough analysis was carried out into the photoluminescence properties and energy transfer processes of Bi $^{3+}$ and Dy $^{3+}$ co-doped LaInO $_3$ phosphor. The examination of CIE coordinates demonstrates improvements in colour quality which are suitable for UV-based WLED uses.

EXPERIMENTAL

Synthesis: A straightforward wet-chemical process called the polyol approach was employed to synthesize pure LaInO₃, Bi-doped and Bi-Dy co-doped nanophosphors. the stoichiometric proportions of lanthanum nitrate, indium nitrate, bismuth nitrate and dysprosium nitrate were mixed in 20 mL of ethylene glycol, which plays a crucial role as both a reducing and capping agent followed by the addition of urea (2 g) and stirred well. The solution temperature must be maintained between 120-140 °C for 2 h. The solutions were collected by washing, centrifugation and dust-free drying. The dried samples were calcined in a furnace at 1000 °C and ground with an agate mortar and pestle.

Characterization: The structural and morphological features of the obtained samples were studied using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The X-ray diffraction (XRD) studies were carried out using a Philips powder X-ray diffractometer (model PW 1071) with Ni filtered Cu- $K\alpha$ radiation in a scanning range of 10° to 90°. A Carl Zeiss sigma VP SEM equipped with a field emission gun operated at 5 kV was used to collect SEM images of the samples. Photoluminescence (PL) emission, excitation and lifetime spectra were measured at room temperature using a 450 W Xe lamp from an Edinburgh Instrument (FLSP 920 system).

RESULTS AND DISCUSSION

Phase formation and microstructure: The XRD results for undoped and LaInO₃: 3 at.% Bi³⁺, 3 at.% Dy³⁺ phosphors are shown in Fig. 1. The XRD results showed that the diffraction patterns are indexed to the pure orthorhombic phase (JCPDS No. 08-0148) of LaInO₃ that falls under *Pnma* space group (#62) [18,19], with no signs of additional or impurity phases present. Table-1 shows the results of using POWDERX software to determine the lattice characteristics of the produced nanophosphors. Using Scherrer's equation, the crystallite diameters of all the samples were determined and found to be between 70 and 90 nm. Fig. 2a shows the SEM image of the optimized sample composition i.e., LaInO₃: 3 at.% Bi³⁺ and 3 at.% Dy3+ phosphor and reveal that the particles, ranging in size from 60 to 90 nm, exhibit a non-uniform spherical shape. The calcination process may have caused the phosphor particles to aggregate. The energy dispersive X-ray spectroscopy (EDS) analysis provided a clear picture of the sample composition and proved to be in excellent agreement with the sample composition (Fig. 2b).

Computational studies: The Vienna *ab initio* Simulation, a method based on plane waves, was used to conduct periodic density functional theory (DFT) simulations of LaInO₃ in order

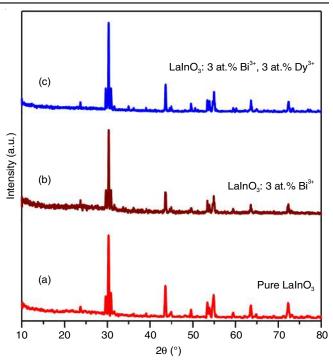


Fig. 1. XRD patterns corresponding to (a) LaInO₃, (b) LaInO₃: 3 at.% Bi³⁺ and (c) LaInO₃: 3 at.% Bi³⁺, 3 at.% Dy³⁺ nanophosphors

TABLE-1					
UNIT CELL PARAMETERS OF UNDOPED LaInO3,					
LaInO ₃ : 3 at.% Bi ³⁺ AND LaInO ₃ : 3 at.% Bi ³⁺ , 3 at.% Dy ³⁺					
Composition	a (Å)	b (Å)	c (Å)	V ³ (Å) ³	
LaInO ₃	5.782	8.336	5. 999	289.14	
LaInO ₃ : 3 at.% Bi ³⁺	5.775	8.245	5.928	282.26	
LaInO ₃ : 3 at.% Bi ³⁺ , 3 at.% Dy ³⁺	5.770	8.015	5.815	268.92	

to investigate the impact of Bi and Dy doping on its electronic structure. Using the generalized gradient approximation (GGA) of Perdew–Burke\Ernzerhof (PBE), the exchange-correlation energy density functional was processed [20]. For determining the band structure of pure LaInO₃, a more precise method than the PBE functional band gaps was employed. The GGA+U was used to describe 'La' strongly linked 5d electrons with a U_{eff} value of 6.0 eV [21].

To optimize the LaInO₃ unit cell structure with 20 orthorhombic (Pnma) atoms, a force cut-off of 0.005 eV/Å was utilized. Consistent with previous results [22], the optimized unit cell structure is displayed in Fig. 3a with parameters a = 5.774 Å, b = 6.006 Å and c = 8.347 Å. In the optimized unit cell structure, InO₆ units have In-O distances of 2.19 Å (a-b) and 2.22 Å (along c), with In-O-In angels of 143.065° (a-b) and 140.225° (c). The minimum and maximum Ln-O distance in LaO₈ units are 2.380 Å and 3.012 Å. In Fig. 3b, the electronic band structure of LaInO₃ calculated using PBE functional yielded a band gap of 2.71 eV, which is consistent with previous results using the same functional but significantly underestimated compared to the experimental band gap of 4.8 eV. The electronic band structure and density of states (DOS) of pure system were estimated using the HSE06 functional and shown in Fig. 3c-d. The measured band gap from HSE06 functional

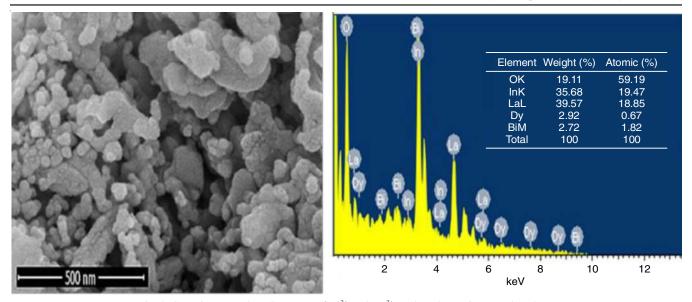


Fig. 2. SEM image and EDS spectra of Bi³⁺ and Dy³⁺ co-doped LaInO₃ nanophosphors

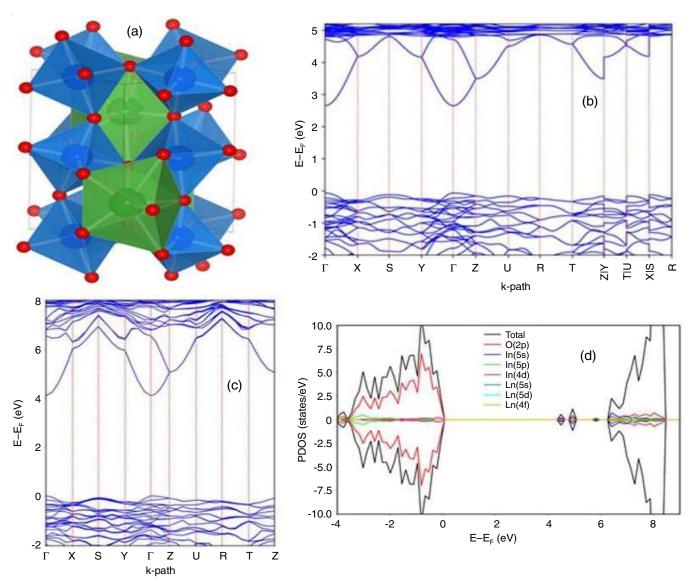


Fig. 3. (a) Optimized unit cell structure (InO $_6$: blue, LaO $_8$: green), (b) electronic band structure from PBE and (c) electronic band structure and density of stated from HSE06 of LaInO $_3$

876 Ganesh et al. Asian J. Chem.

was 4.49 eV, which matches the experimental results. The projected density of states (PDOS) shows that O 2p states dominate the valence band, with In 4d and 5p states contributing little. The bottom of the conduction band is largely In 5s and O 2p states. The effect of Bi, Dy and Bi-, Dy co-doping was studied using a 160-atom $2 \times 2 \times 2$ super cell. Fig. 4 shows the optimal structures for Bi and Dy substitutional doping at Dy site, which was energetically favourable. Bi-doped LaInO₃ has a band gap of 2.599 eV, down from 2.715 eV in pure LaInO₃. Doping with Dy did not significantly lower the band gap (2.710 eV) from 2.715 eV in pure).

Fig. 5 shows the total and projected density of state (DOS) on Bi states in Bi-doped LaInO₃ to explain the band gap reduction. The PDOS of Bi shows that Bi 6s, 5p and 5d states contribute to the top of the valence band. The structure with relative energies for co-doping Bi and Dy in three relative positions were optimized as shown in Fig. 5. Structure with Bi and Dy at longer distances is energetically minimal compared to structure with them at nearer La sites. The electronic band structure of Bi and Dy co-doped system is essentially identical to Bi-doped system with band gap of 2.584 eV (Fig. 5).

Photoluminescence properties of bismuth single doped LaInO₃ phosphors: Fig. 6a-b shows the emission and excitation spectra of Bi-singly doped LaInO₃ samples. Monitoring

excitation spectra at $\lambda_{em} = 432$ nm revealed a large peak maximum at 330 nm. The observed phenomenon was Bi³⁺ ion ¹S₀ to ³P₁ transition. The observed pattern in the emission spectra at 432 nm is a result of the ${}^{3}P_{1}$ - ${}^{1}S_{0}$ transition of Bi ${}^{3+}$ ions when excited at 330 nm [23]. Fig. 6c shows the decay and steady state graphs that match. As the concentration of Bi3+ ions increased, the intensity of emission band at 432 nm peaked at 3.0% Bi³⁺ ions and then decreased as a result of the concentration quenching effect. The two-exponential lifetime estimates for LaInO₃:x at.% Bi³⁺ samples were 297, 332 and 270 ns, respectively for x = 1, 3 and 5 at.%, confirming the results. The steps to determine the decay lifetime values are outlined as follow. When the emission and excitation bands of Bi³⁺ and Dy³⁺ ions overlap, as demonstrated in the as-prepared samples (Fig. 7), an effective energy transfer (ET) occurs. The emission bands of Bi3+ encompass the excitation bands of Dy3+, resulting in the observed phenomena.

Photoluminescence properties of Bi³⁺, Dy³⁺ co-doped LaInO₃ phosphors: Fig. 8a shows LaInO₃ emission spectra doped with 3 at.% Bi³⁺ and changing Dy³⁺ concentrations (y = 1, 2, 3, 5). Similar excitation spectra are shown in Fig. 8b. The emission spectra for LaInO₃: 3 at.% Bi³⁺, (y = 1, 2, 3, 5 at.%), Dy³⁺ show blue to yellow lines due to the presence of Bi³⁺ and Dy³⁺ ions at $\lambda_{ex} = 330$ nm. The intensity of Bi³⁺ emission signi-

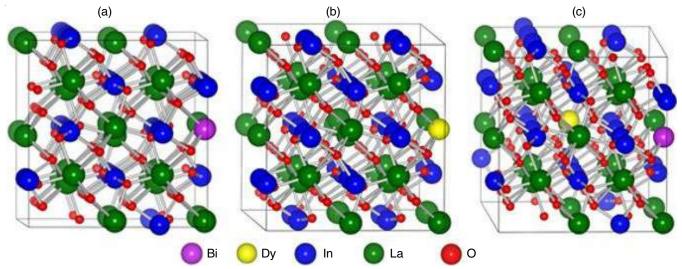


Fig. 4. Optimized minimum energy structure of (a) Bi doped, (b) Dy doped and (c) Bi & Dy co-doped LaInO₃ 2 × 2 × 2 super cells

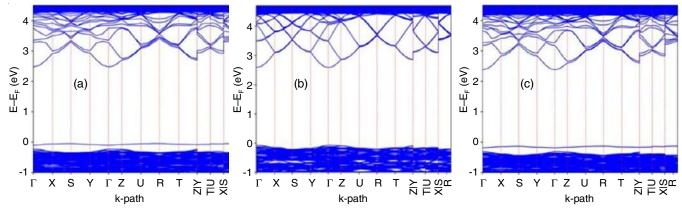


Fig. 5. Electronic band structure of (a) Bi doped, (b) Dy doped and (c) Bi & Dy co-doped LaInO3 calculated using PBE functional

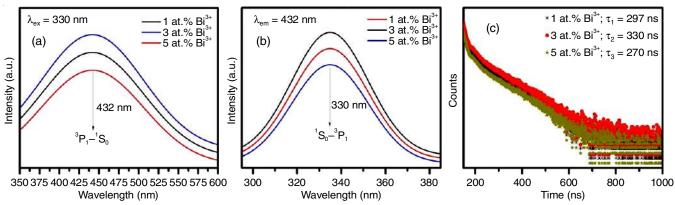


Fig. 6. Photoluminescence (a) emission, (b) excitation and (c) decay curves of LaInO₃:Bi³⁺ (1, 3, 5 at.%) samples

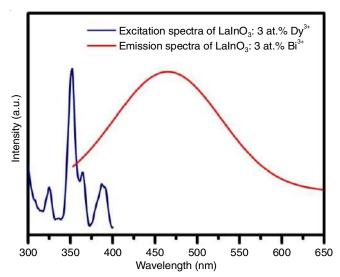


Fig. 7. Spectral overlap of excitation spectrum (λ_{em} monitored at 576 nm) of LaInO₃: Dy³⁺(3 at.%) and emission spectrum of LaInO₃: Bi³⁺ (3 at.%) (λ_{ex} with 330 nm) samples

ficantly diminishes when the concentration of Dy³⁺ is altered, while maintaining Bi³⁺ at 3%. On the other hand, as the concen-

tration of Dy3+ increases, the emission intensity peaks at 3% Dy³⁺ and subsequently drops. The energy transitions and cross relaxation of Dy³⁺ ions are responsible for this concentration quenching action. The photoluminescence intensity of these kind of material decreases during cross relaxation due to the exchange contact, radiation re-absorption or interactions between several multipoles [24]. The distinctive ${}^4F_{9/2} - {}^6H_{13/2}$ emission levels of Dy3+ are shown in the excitation spectra at $\lambda_{\rm em}$ = 584 nm. Moreover, a broad band centered around 330-335 nm is attributed to Bi³⁺ ions. Importantly, the co-doping of Bi³⁺ affects the Dy³⁺ ion, which causes a small shoulder absorption band to peak at 335 nm (Fig. 6b). This shows that the excited Bi³⁺ ions efficiently transmit energy (ET) to the Dy³⁺ ions, sensitizing the Dy³⁺ ions. Fig. 9a clearly shows the changes in Bi³⁺ emission intensity as a function of Dy³⁺ concentrations. Similalry, Fig. 9b shows the comparitive emission spectra between single doped LaInO₃: Dy³⁺ and LaInO₃: Bi³⁺/ Dy³⁺ ions in order to determine the effect of Bi³⁺ doping on the enhancement of PL intensity. As a result, the LaInO₃ phosphor compound photoluminescence emission was enhanced.

Lifetime measurements of Bi³⁺, **Dy**³⁺ **co-doped LaInO**₃ **phosphors:** Fig. 10a shows samples of LaInO₃ (3 at.% Bi³⁺, y

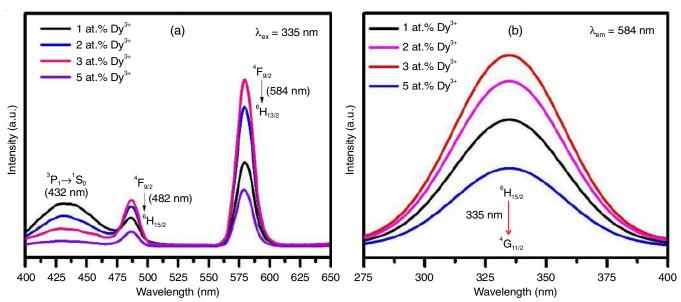


Fig. 8. Photoluminescence (a) emission and (b) excitation spectra of LaInO₃: 3 at.% Bi^{3+} ; y at.% (y = 1, 2, 3, 5 at.%) Dy^{3+} samples

878 Ganesh et al. Asian J. Chem.

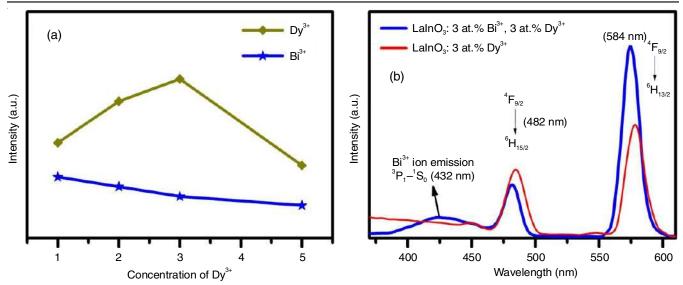


Fig. 9. (a) Intensity variation of Bi^{3+} as a function of Dy^{3+} ions and (b) comparison of single doped Dy^{3+} LaInO₃ emission spectra w.r.to Bi^{3+} / Dy^{3+} co-doped LaInO₃ emission spectra

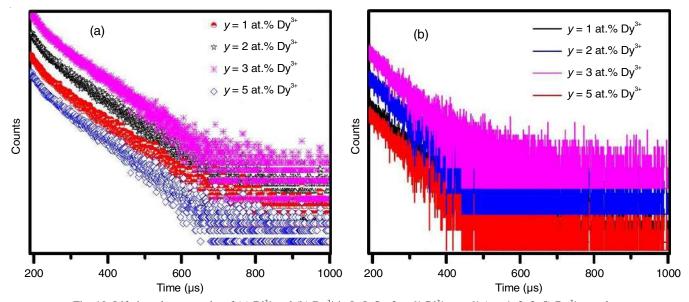


Fig. 10. Lifetime decay graphs of (a) Bi^{3+} and (b) Dy^{3+} in $LaInO_3$: 3 at.% Bi^{3+} , y at.% (y = 1, 2, 3, 5) Dy^{3+} samples

at.% (y = 1, 2, 3, 5) Dy³⁺ were used to study the life time decay dynamics. The following equation was determined to effectively correspond with the bi-exponential luminescence decay curves generated for all samples:

$$I = A_1 \exp\left(\frac{-t}{\tau_1}\right) + A_2 \exp\left(\frac{-t}{\tau_2}\right)$$
 (1)

In this equation, I represent the luminescence intensity with respect to time (t), while the two decay components of decay time are denoted by τ_1 and τ_2 , respectively. The constants A_1 and A_2 are also included in the formulation. The average decay times of the respective samples were estimated based on the specified parameters using the following formula:

$$\tau = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2} \tag{2}$$

The calculated luminescence decay times (τ) of Bi^{3+} are approximately 220, 201, 192 and 179 ns for LaInO₃: 3 at.% Bi^{3+} ; y at.% (y=1,2,3,5) Dy³⁺ samples. The decay times for the corresponding Dy³⁺ are 226, 240, 283 and 239 μ s as shown in Fig. 10b. The increase of Dy³⁺ concentration results in an accelerated decline of Bi^{3+} emission, a phenomenon attributed to energy transfer from Bi^{3+} to Dy^{3+} .

Using the following equation the energy transfer (ET) efficiency (η_{ET}) of Bi^{3+} - Dy^{3+} can be estimated:

$$\eta_{\rm ET} = 1 - \frac{\tau_{\rm s}}{\tau_{\rm co}} \tag{3}$$

where τ_s and τ_{so} are the lifetime values of sensitizer Bi³⁺ in the presence and absence of activator, respectively. Table-2 details the values of the energy-transfer efficiency η_{ET} from Bi³⁺ to Dy³⁺ for LaInO₃. In addition, the energy transfer efficiency as

TABLE-2 ENERGY TRANSFER EFFICIENCY OF THE PREPARED PHOSPHOR POWDER					
Prepared phosphor powder	· · · v		$\eta_{\text{ET}}(\%)$		
	1	2.20	34		
LaInO ₃ : 3 at.%	2	2.01	39		
Bi ³⁺ , y at.% Dy ³⁺	3	1.92	42		
	5	1.79	46		

a function of decay values is shown in Fig. 11. Resonant energy transfer in phosphors occurs via two distinct types of interactions: exchange and multi-polar interaction, which move electrons from a sensitizer (Bi³⁺) to an activator (Dy³⁺). It is essential to keep the critical distance between the sensitizer and activator below 5 Å in order for energy transfer to occur through the exchange contact. An electric multi-polar interaction is anticipated to occur once the transfer distance reaches the critical distance. An approximation of the critical distance R_c between Bi^{3+} and Dy^{3+} in the LaInO₃ matrix can be obtained by applying the following equation:

$$R_{c} \approx 2 \left(\frac{3V}{4\pi \chi_{c} Z} \right)^{1/3} \tag{4}$$

where Z represents the number of activator ions within the unit cell; X_c is the total critical value of dopant ions and V is the volume of unit cell.

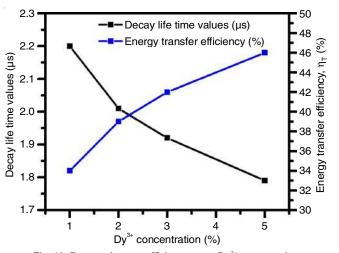


Fig. 11. Decay values vs. efficiency w.r.to Dy^{3+} concentration

Utilizing the parameters $V=289.63~\text{Å}^3$ and Z=2 for the LaInO₃ host, along with the optimum dopant ion concentration ($X_c=0.06$ for Bi³⁺-Dy³⁺ system), the ' R_c ' between Bi and Dy was estimated as 16.64 Å. It is unlikely that an exchange interaction will result in energy transfer as the measured values are much more than 5 Å. As a result, the energy transfer in LaInO₃ from Bi³⁺ to Dy³⁺ is probably heavily influenced by the multipolar interaction. This relationship can be easily determined by applying Reisfeld's approximation and Dexter's energy-transfer description of multi-polar interaction.

$$\frac{I_{so}}{I_s} \propto C^{\frac{\alpha}{3}} \tag{5}$$

where I_{so} stands for Bi³⁺ lifetime at a given concentration in LaInO₃ and I_s for the Bi³⁺ lifetime in the presence of Dy³⁺. The Dy³⁺ concentration is represented by variable C, while the electric dipole-dipole, electric quadrupole-quadrupole and electric quadrupole-quadrupole interactions are indicated by the values 6, 8 and 10 of the variable α. The optimal linear behaviour for the $I_{so}/I_s \sim C^{\alpha/3}$ (C > 1%), as shown in Fig. 12, was attained at $\alpha = 6$. This shows that electric dipole-dipole interaction transfers energy from Bi3+ to Dy3+. The CIE chromaticity coordinates for pure 3 at.% Bi^{3+} and $LaInO_3:3$ at.% Bi^{3+} , y at.% Dy^{3+} (where y = 1, 2, 3, 5) doped LaInO₃ phosphors are shown in Fig. 13. Furthermore, Table-3 outlines the photometric variables of the LaInO₃ sample, determined using colour calculator software. The CIE diagram illustrates a transition of the CIE colour coordinates from a vibrant blue to a yellowish region, passing through white, as the concentration of Dy3+ changes. This observation

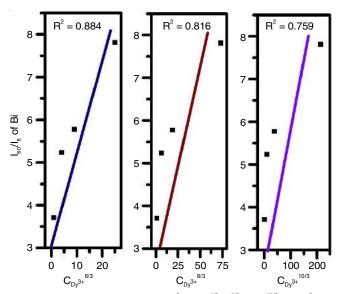


Fig. 12. Dependence of I_{so}/I_s (of Bi^{3+}) on $C^{6/3}$, $C^{8/3}$ and $C^{10/3}$ for Dy^{3+}

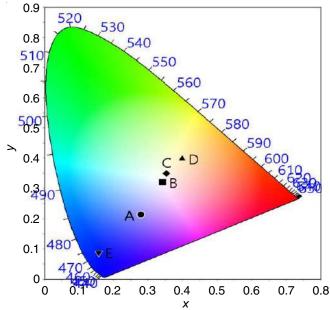


Fig. 13. CIE chromaticity diagram of $\mathrm{Bi^{3+}}$ and $\mathrm{Dy^{3+}}$ doped $\mathrm{LaInO_3}$ phosphors

880	Ganesh et al.	Asian J.	Chem.

TABLE-3 PHOTOMETRIC PARAMETERS OF PREPARED PHOSPHOR POWDER					
Prepared phosphor	V	Symbol	CIE coordinates		- Colour
powder	y Symbol	X	Y	Coloui	
	1	A	0.2792	0.2135	Bluish
LaInO ₃ : 3 at.%Bi ³⁺ , y at.% Dy ³⁺	2	В	0.3415	0.3209	White
y at.% Dy ³⁺	3	C	0.3533	0.3498	White
	5	D	0.3982	0.3992	Yellowish
LaInO ₃ : <i>x</i> at.% Bi ³⁺	x = 3	E	0.1564	0.0891	Deep Blue

suggests that the synthesized phosphor holds promise as a single phase phosphor for use in WLEDs and field display fields under UV excitation.

Energy transfer (ET) mechanism: Fig. 14 depicts the energy transfer system that has been suggested. The electrons of Bi³⁺ ions undergo a transition from ¹S₀ to ³P₁ in response to stimulation from ultraviolet light. Afterwards, these excited electrons are lowered to the ground state by non-radiative processes. The energy is transferred from the ³P₁ level of Bi³⁺ to the ⁴G_{11/2} level of Dy³⁺ through cross-relaxation. The intensity of Dy³⁺ emissions may be enhanced by co-doping with Bi³⁺ ions. The blue light emitted by some Bi³⁺ ion electrons that return to the ground state can absorb energy from ${}^{6}H_{15/2}$ of Dy³⁺ ground state levels. Higher energy levels are excited and energy is transferred throughout this process as a result of the observed spectra overlapping. The accelerated electrons, through non-radiative processes, attain the ${}^4G_{11/2}$ level of Dy³⁺ before returning to the ground state, resulting in the emission of yellowish spectral lines.

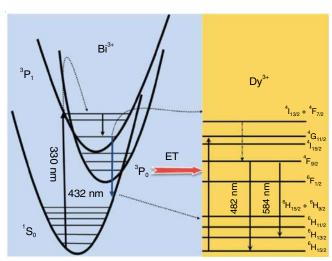


Fig. 14. Energy level diagram of LaInO₃:Bi³⁺:Dy³⁺ nanophosphors

Conclusion

The polyol technique was used to produce Bi³⁺ and Dy³⁺ doped LaInO₃. The luminescence and energy transfer processes of Bi³⁺ and Dy³⁺ were studied. The X-ray diffraction shows that annealed samples have entirely crystallized into LaInO₃ orthorhombic. Morphological analysis shows that the particles are spherical agglomerates between 60 and 90 nm in size and shape. The EDS examination showed that Bi³⁺ and Dy³⁺ ions were incorporated into LaInO₃ host material. Periodic density

functional theory (DFT) simulations utilizing plane wave-based Vienna ab initio simulation program (VASP) were conducted to elucidate the influence of Bi³⁺ and Dy³⁺ ions on the electronic structure of LaInO₃. The electronics of the co-doped system with Bi³⁺ and Dy³⁺ have a band gap of 2.584 eV, similar to that of the Bi³⁺-doped system. The ³P₁-¹S₀ transition of Bi³⁺ ions causes the blue emission peak at 432 nm in Bi³⁺-doped LaInO₃. The transitions from ${}^4F_{9/2}$ - ${}^6H_{15/2}$ and ${}^6H_{13/2}$ of Dy³⁺ ions cause blue and bright yellow emissions at 482 and 584 nm, respectively. The optimal sample was LaInO₃: 3 at.% Bi³⁺; 3 at.% Dy³⁺. The considerable enhancement in Dy³⁺ emission achieved by Bi3+ co-doping allows LED and display technologies to use Dy³⁺ doped phosphors. Thus, electric dipole-dipole interactions transfer resonance energy from Bi³⁺ to Dy³⁺. The CIE chromatic colour characteristics show that the colour of the sample goes from deep blue to yellowish to white, suggesting that the generated phosphor could be a WLED single-phase phosphor.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- M.K. Tsang, G. Bai and J. Hao, Chem. Soc. Rev., 44, 1585 (2015); https://doi.org/10.1039/C4CS00171K
- L. Tian, J. Shen, T. Xu, L. Wang, L. Zhang, J. Zhang and Q. Zhang, RSC Adv., 6, 32381 (2016); https://doi.org/10.1039/C6RA04761K
- S.F. Lai, Z.W. Yang, J.Y. Liao, J.B. Qiu, Z.G. Song, Y. Yang and D.C. Zhou, *Mater. Res. Bull.*, 60, 714 (2014); https://doi.org/10.1016/j.materresbull.2014.09.049
- W. Zhang, S.X. Liu, Z.F. Hu, Y.L. Liang, Z.Y. Feng and X. Sheng, *Mater. Sci. Eng. B*, 187, 108 (2014); https://doi.org/10.1016/j.mseb.2014.05.006
- L. Tian, L. Wang, L. Zhang, Q. Zhang, W. Ding and M. Yu, J. Mater. Sci.: Mater. Electron., 26, 8507 (2015); https://doi.org/10.1007/s10854-015-3522-1
- T. Samuel, C.S. Kamal, K. Sujatha, V. Veeraiah, Y. Ramakrishana and K.R. Rao, *Optik*, **127**, 10575 (2016); https://doi.org/10.1016/j.ijleo.2016.08.063
- J.K. Li, J.G. Li, S.H. Liu, X.D. Li, X.D. Sun and Y.S. Sakka, *J. Mater. Chem. C Mater. Opt. Electron. Devices*, 1, 7614 (2013); https://doi.org/10.1039/c3tc31413h
- C.S. Kamal, T.K. Visweswara Rao, P.V.S.S.S.N. Reddy, K. Sujatha, B.P. Ajayi, J.B. Jasinski and K.R. Rao, RSC Adv., 7, 9724 (2017); https://doi.org/10.1039/C6RA28719K
- T. Samuel, C.S. Kamal, S. Ravipati, B.P. Ajayi, V. Veeraiah, V. Sudarsan and K.R. Rao, *Opt. Mater.*, 69, 230 (2017); https://doi.org/10.1016/j.optmat.2017.04.037
- N. Lakshminarasimhan and U. Varadaraju, *Mater. Res. Bull.*, 41, 724 (2006); https://doi.org/10.1016/j.materresbull.2005.10.010

- 11. D. Lybye, F.W. Poulsen and M. Mogensen, *Solid State Ion.*, **128**, 91 (2000);
 - https://doi.org/10.1016/S0167-2738(99)00337-9
- C. Guo, X. Ding, L. Luan and Y. Xu, Sens. Actuators B Chem., 143, 712 (2010); https://doi.org/10.1016/j.snb.2009.10.023
- 13. M. Xie, D. Li, R. Pan, X. Zhou and G. Zhu, *RSC Adv.*, **5**, 22856 (2015); https://doi.org/10.1039/C5RA00585J
- 14. S. Park, *Mater. Lett.*, **135**, 59 (2014); https://doi.org/10.1016/j.matlet.2014.07.134
- S. Lee and S. Park, *J. Lumin.*, 143, 215 (2013); https://doi.org/10.1016/j.jlumin.2013.05.008
- K. Li, H. Lian, M. Shang and J. Lin, *Dalton Trans.*, 44, 20542 (2015); https://doi.org/10.1039/C5DT03565A
- Z. Sun, M. Wang, Z. Yang, Z. Jiang, K. Liu and Z. Ye, J. Alloys Compd., 658, 453 (2016); https://doi.org/10.1016/j.jallcom.2015.10.242
- C. Hu, Z. Zhang, H. Liu, P. Gao and Z.L. Wang, *Nanotechnology*, 17, 5983 (2006);
 - https://doi.org/10.1088/0957-4484/17/24/013

- L. Chen, K.J. Chen, S.F. Hu and R.S. Liu, *J. Mater. Chem.*, 21, 3677 (2011); https://doi.org/10.1039/c0jm02487b
- J. Heyd, G.E. Scuseria and M. Ernzerhof, J. Chem. Phys., 118, 8207 (2003);
 - https://doi.org/10.1063/1.2204597
- S. Dudarev, G. Botton, S. Savrasov, C. Humphreys and A. Sutton, *Phys. Rev. B*, **57**, 1505 (1998);
 - https://doi.org/10.1103/PhysRevB.57.1505
- X. Hu, F. Piccinelli and M. Bettinelli, J. Alloys Compd., 889, 163344 (2022); https://doi.org/10.1016/j.jallcom.2021.163344
- H. He, R. Fu, Y. Cao, X. Song, Z. Pan, X. Zhao, Q. Xiao and R. Li, *Opt. Mater.*, 32, 632 (2010); https://doi.org/10.1016/j.optmat.2010.01.009
- S. Dutta, S. Som and S.K. Sharma, *Dalton Trans.*, 42, 9654 (2013); https://doi.org/10.1039/c3dt50780g