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INTRODUCTION

The genus of Illicium belongs to the Illiciaceae family.
About 40 species of this genus have been found in north-eastern
America, Mexico, the west Indies and eastern Asia. Several
species of this genus have been used as traditional medicinal
plants to treat pain, rheumatism, skin inflammation, etc. [1].
They are a rich source of prenylated C6-C3 compounds, neoli-
gnans and secoprezizaane-type sesquiterpenes. Such compounds
belong to unique structural types and occur exclusively in
Illicium species and are considered to be characteristic chemical
markers [2].

Illicium verum is a medium-sized plant and known as star
anise. Star anise is mainly found in east and southeast Asia
and southern North America. In east Asia, China is the main
production area of star anise, followed by Vietnam, Cambodia,
Myanmar, Indonesia and Philippines [3]. The main part of the
plant that has high efficacy is the fruit, which is star-shaped in
diameter 2.5 cm-4.5 cm. This fruit produces star anise oil which
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is widely used in the food and pharmaceutical industries
because of its antimicrobial, antifungal and antioxidant prop-
erties [3,4]. trans-Anethole (89.5%), 2-(1-cyclopentenyl)furan
(0.9%) and cis-anethole (0.7%) were found to be the main
components among 22 identified compounds, which accounted
for 94.6% of the total oil [4]. Several extracts of I. verum Hook.
f. fruit have capabilities as an antioxidant, antimicrobial and
antiglycemic [5-7].

From literature review, it was found that there are no signi-
ficant data reports on secondary metabolite chemicals present
in the fruit of this plant other than essential oils. On the other
hand, no evidence has been found that this genus impacts malaria;
however, traditional herbal medicine can become a sustainable
source of treatment [8-10]. Thus, traditional medicine has to be
taken into consideration while developing antimalarial pharma-
ceuticals because it provides availability as well as provides
effective prevention. Molecular screening through computer
aided drug design has become an effective method for identi-
fying the prospective therapeutic candidates to treat different
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kinds of diseases. This theoretical approach allows us to get the
experimental overview predictability [11,12].

The main purpose of this study was to isolate and elucidate
the major secondary metabolite compound structurally from
I. verum Hook. f. fruit. Moreover, the inhibition activity of an
isolated compound as a potential antiplasmodial agent using
a computational method was also predicted.

EXPERIMENTAL

The IR spectra was recorded using Bruker ALPHA II – Eco
ATR instrument, whereas the UV-VIS spectra was recorded
using Shimadzu-1800, Japan. The NMR spectra was recorded
with 1H and 13C NMR Bruker 600 MHz  at 298 K in DMSO-d6

solvent. The vacuum liquid chromatographic (VLC) separation
and gravity column chromatography (GCC) was performed
on silica gel 60 GF254 (Merck) and 0.063-0.200 mm, respectively.
TLC plates were precoated with 60 GF254 (Merck, 0.25 mm)
and anisaldehyde as spraying agent was used to detect the spot.

Extraction and isolation: The dried fruit of I. verum (1.2
kg) was thoroughly grounded to be a powder and then extracted
with ethanol. The extract was evaporated to obtain the concen-
trated ethanol extract. The ethanolic extract was partitioned with
n-hexane and ethyl acetate sequentially. After that it was again
concentrated by a rotary vacuum evaporator. Next, the ethyl
acetate extract was separated by GCC using n-hexane: ethyl
acetate eluent. The fraction contained pure compound was
identified using spectroscopic methods including UV-Vis, IR
and NMR.

Docking studies: The obtained compound was designed
using the Hyperchem program and then optimized using the
Gaussian program. The geometry optimization and calculation
were carried out using the DFT method with B3LYP/6-311
++G** model as the basis-set calculation. Meanwhile, wild-
type Plasmodium falciparum dihydrofolate reductase-
thymidylate synthase (PfDHFR-TS) (PDB ID: 1J3I) was chosen
as target protein. Despite the fact that there were four chains,
only chain A was utilized in order to avoid the complication.
The standard missing residue reconstruction was performed
using Modeller 9.21 package. On both ligand and receptor, it
was added H-bond atoms and charge by using AMBER FF14SB
force field model and AM1-BCC [13,14]. The molecular docking
of the isolated compound was performed using the Dock6
package [15]. Some parameters used into the grid-box prepara-
tion were grid-spacing (0.3 Å), centre (X: 28.017, Y: 8.509, Z:
57.986) and dimensions (X: 26.738, Y: 23.785, Z: 27.784). To
ensure each parameter used, redocking of protein native ligand,
WRA, was conducted to evaluate the docking model accept-
ability based on RMSD value < 2 Å [16].

Molecular dynamic simulations: Molecular dynamic
simulations were performed using the Amber22 package [17]
for the following complexes (a) free protein (APO), (b) protein
co-crystal PfDHFR-TS with WRA inhibitor and (c) verimol
G-protein complex after docking. All these complexes were
solvated separately by applying them through solvate box
TIP3PBOX (size 12 Å). In addition to the model, the protein-
ligand, Cl– and Na+ ions were added to make the system’s total
charge neutral by using SIRAH force field [18]. Afterward, the

energy system was minimized for 2000 steps before the produ-
ction stage was carried out for 100 ns. The system was heated
and kept at 300 K and 1 atm. The results were analyzed using
several variables such as conformation dynamics, binding affinity
and key binding residue.

Free energy binding: Using a hybrid-based approach,
the binding free energy calculation (∆Gbind) utilized the last 10
ns trajectory from 100 ns. The enthalpy calculation (∆H) used
the Quantum Mechanics/Molecular Mechanics-Generalized
Born (QM/MM-GBSA) [19]. Some parameters like generalized
born solvation model and QM theory: MNDO method was
provided in this research [20]. Meanwhile, the entropy change
(-T∆S) was calculated in the normal mode method (NMODE)
[21-24].

∆Gbind = Gcomplex – (Greceptor – Gligand) (1)

∆Gbind = ∆H – T∆S = ∆Ggas + ∆Gsol – T∆S (2)

∆Ggas = Epl
int (3)

∆Gsol = ∆GGB + ∆GSCF (4)

RESULTS AND DISCUSSION

Spectroscopic techniques were used to elucidate the struc-
ture of the isolated compound and the results indicated that the
isolated compound was verimol G (Fig. 1), which is agreement
with the reported values [25].
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Fig. 1. Molecule structure of Verimol G

Binding and free energy: To investigate the potential
compound, the isolated compound was docked (Fig. 2) into the
active site of P. falciparum dihydrofolate reductase (PfDHFR)
[26]. Ligand molecules were superposed and the obtained good
criteria RMSD 0.765 Å. The lower interaction energy (Fig.
2d) belonged to the native ligand, WRA (6,6-dimethyl-1-[3-
(2,4,5-trichlorophenoxy)propoxy]-1,6-dihydro-1,3,5-triazine-
2,4-diamine), indicated a good stability and the binding inter-
action was more potent than verimol G. The grid scores were
calculated from energy of van der Waals (EvdW) and electrostatic
(Eele) in gas phase [27]. The EvdW provide a notable contribution
to interaction energy against PfDHFR. Afterwards, the free
energy binding analysis (∆Gbind) was performed to explore
the binding affinity. It used MMPBSA.py tools, which were
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executed from the last 10 ns trajectories. Energy components
are listed in Table-1, which shows that WRA has the lowest
free binding energy then verimol G. Thus, the binding energy
belonging to WRA had more robust binding than Verimol G.

TABLE-1 
ENERGY COMPONENTS (kcal mol-1) OF EACH SYSTEM 

CALCULATED USING QM/MM-GBSA APPROACH 

Energy components WRA Verimol G 

QM/MM (MNDO)   

∆EvdW -46.70 ± 0.21 -36.19 ± 0.38 

∆Eele 0.12 ± 0.00 0.22 ± 0.00 

∆Ggas -46.58 ± 0.21 -35.96 ± 0.38 

∆GSCF -6.10 ± 0.26 0.39 ± 0.26 

GBSA   
ele
solG∆  17.85 ± 0.22 10.61 ± 0.25 
nonpolar
solvG∆  -5.26 ± 0.01 -5.15 ± 0.04 

∆Gsol 12.58 ± 0.21 5.46 ± 0.22 

NMODE   

-T∆S -23.78 ± 0.80 -22.04 ± 0.96 

Hybrid-based binding free energy  

∆H -40.10 ± 0.24 -30.11 ± 0.38 

∆Gbind -16.3 -8.07 

 
Dynamics conformation after simulation: Stability and

flexibility: This analysis was performed to learn the dynamics
behaviour in molecular dynamics simulation [28]. APO

PfDHFR was also performed in this study. During simulation
as shown in Fig. 3, complex RMSD of all ligands and APO
was maintained at 0.35-0.4 nm and 0.2-0.34 nm in the
backbone. There was no significant fluctuation shown, which
was < 0.4 nm. Each system quickly increased during first 3 ns
(2 ns in backbone protein) and then fluctuated by nearly 0.4
ns until 100 ns. Specifically, the last 20 ns trajectory showed
good stability. Further analysis was done to learn the effect of
ligand on the atom dynamics using root mean square fluctuation
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Fig. 3. The-root-mean-square-deviation (RMSD) of Backbone (left) and
complex (right) for each system during 100 ns MD simulation
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(RMSF) and B-factor [29,30]. Based on Fig. 4, there is a corre-
lation between RMSD and B-factor as some residues fluctuated
significantly (R24-28, R82-87) in loop regions. The fluctuation
indicated instability. It was anticipated because our attention
was on the helix region, which served as an active site [31].
The loop regions exhibited higher RMSF values exceeding
0.14 nm and 90 ± 25 for B-factor, mostly due to the flexible
nature of the β-strand structure. The minimum RMSF observed
was 0.01 nm and 0.3 ± 0.5 in B-factor for each ligand and
apoprotein with their complex. However, the RMSF and B-factor
results showed that the complex ligand was stable enough and
the conformation had low flexibility.

Key binding residues: Some key binding residues contri-
buted to the stabilizing ligand binding, which was analyzed
from free energy decomposition [32]. However, the energy
decomposition ( residue

bindG∆ ) evaluation used the MM-GBSA
model plotted over the last 10 ns trajectories. The residue

bindG∆
analyses intend to evaluate the amino-acid interaction energy
in the receptor active site. The interaction energy criterion is <
-1 kcal/mol, where Fig. 5 shows all the key residues based on
the criterion. The primary energy contributors of WRA were
L46, I112, I14, C15 and F58; meanwhile, in verimol G, it was
I112. The mentioned factors had a positive impact on the inter-
action and made a significant contribution to the overall free
energy. Therefore, all the eligible residues could play a vital
role in the binding pattern of the ligand receptor.

Inhibitor-wild-type P. falciparum interaction: In this
analysis, we described the interaction based on two variables,
atom contact and hydrogen bond, after 100 ns simulation [33].
The hydrogen bond appears from hydrogen and electronegative
atom attraction [31]. The results (Fig. 6) show that verimol G
has interacts less than WRA however, verimol G had intense
contact only in the beginning 20 ns. Several 12 contacts in
verimol G-PfDHFR and 11 in WRA-Pf were found. Based on
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Fig. 5. The energy decomposition and energy contribution (EvdW + Eele)
analysis using MM-GBSA calculation from last-10-ns trajectory

residues on the binding side, the key binding residues having
contact between candidates and the targeted complex were
detected. During the 100 ns simulation, residues I14 and D54
in WRA and D54 in verimol G were the key residues. From
the hydrogen occupation, the hydrogen bonding showed
62.34% in I14 and 40.93% in D54. On the other hand, verimol
G-PfDHFR gave a percentage of 25% in residue D54, which
has a low hydrogen bond cluster [34].

Conclusion

Verimol G was successfully isolated from the ethyl acetate
extract of Illicium verum Hook. f. fruit. The isolated compound
was tested computationally as antiplasmodial agent. The WRA,
the native ligand of the receptor, was used as a positive control.
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interaction: Atom contact through 100-ns simulation

Analysis of the findings revealed that WRA exhibited stronger
inhibition compared to verimol G. Despite this, the potential
of verimol G is still significant, especially considering the need
for further exploration of the genus.
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