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INTRODUCTION

The knowledge of the chemistry of thiosemicarbazide and
its analogs is of utmost importance as they are used for the
synthesis of a large number of new organic compounds [1-3].
Within the last few decades, extensive research studies on the
chemistry of thiosemicarbazide have been done, which
suggests that the thiosemicarbazide derivatives can undergo a
wide variety of reactions leading to the synthesis of many use-
ful drugs [4,5]. Thiosemicarbazones is one of the fundamental
subgroups of hydrazine [6] and it can be obtained through the
reaction of thiosemicarbazide with aldehydes or ketones [7,8].
Thiosemicarbazide (NH2-NH-CSNH2) is the simplest hydra-
zine analog of thiocarbamide acid [9,10]. Both thiosemicarb-
azide and thiosemicarbazones (Fig. 1) are strong intermediates
for the combination of drug and bioactive materials and in this
manner, they are utilized widely in the field of medicinal
chemistry. The imine bond (-N=CH-) in these compounds is
helpful in organic synthesis, specifically for the arrangement
of heterocycles and non-characteristic β-amino acids [11-14].
These compounds and their derivatives show a large number
of potential pharmacological activities like antifungal [15,16],
antibacterial [17-19], anti-Alzheimers [20], anti-Trypanosoma
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[21], anti-inflammatory [22], antituberculosis [23,24], anti-
urease [25,26], antioxidant [27,28], antiprotozoal [29], antiviral
[30], anticancer [31], anticonvulsant [32], tyrosinase inhibitory
activities [33]. From the pharmacological point of view, thio-
semicarbazide derivatives are useful intermediates and subunits
for the development of drugs or molecules of significant bio-
logical interest [34].
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Fig. 1. Structure of thiosemicarbazide and thiosemicarbazone

The application of these analogs in organic synthesis has
developed a traditional method for the research of a wide variety
of heterocyclic compounds [35]. Because of the presence of
some reactive centers, these compounds are suitable precursors
for the synthesis of nitrogen and sulfur-containing heterocyclic
compounds, for example, triazoles, triazines, pyrazoles, thiazoles,
thiadiazoles, pyrimidines, etc. [36-38]. Thiosemicarbazide can
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easily incorporate other chemically biological active molecules
which may increase the functionality and optimization of its
the structure also for the discovery of a new class of therapeutic
agents [39,40]. A large number of pharmacologically active
drugs containing the moiety of thiosemicarbazide and thio-
semicarbazone in their structure are shown in Table-1 and also
several reported ligands are there, which shows different bio-
logical activities are listed in Table-2. The literature shown in
this article is the compilation and systematic presentation of

last 20 years, synthetic schemes that were used for the synthesis
of thiosemicarbazide derivatives having a wide variety of bio-
logical actions.

Synthesis and biological activities of thiosemicarbazide
analogs: Various synthetic schemes giving a large number of
novel thiosemicarbazide and its derivatives with a different
type of biological activities are discussed below:

Anticancer activity: Sibuh et al. [87] synthesized a novel
series of thiosemicarbazones derivatives by the reaction with
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acetone, 3-methoxy benzaldehyde and 4-nitro benzaldehyde
(Schemes I-III) which were further checked for their in vitro
anticancer activity against human breast cancer cell line MCF-7
and normal cell MCF-10. It was observed that acetone thiosemi-
carbazone (1) and 3-methoxy benzaldehyde thiosemicarbazone
(2), were more active against MCF-7 breast malignancy cells
with IC50 estimation of 2.271 and 2.743 µg/mL, respectively.
Yousef & El-Reash [88] synthesized 3-(4-hydroxyphenyl)-1-
phenyl-1H-pyrazole-4-carbaldehyde 4N-(2-pyridyl)thiosemi-
carbazone (4) (Fig. 2) and it was noted that the metal complexes
of Mn(II), Zn(II), Cd(II), Cu(II), Ni(II), Co(II) showed the anti-
oxidant and antitumor activities. The reported range of antioxi-
dant activity was between 0.542 to 2.356 µg/mL and the antitumor
activity with IC50 range was between 57.42 to 74.84%.
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Fig. 2. Structure of 3-(4-hydroxyphenyl)-1-phenyl-1H-pyrazole-4-carbal-
dehyde 4N-(2-pyridyl)thiosemicarbazone

Dincel & Guzeldemirci [89] synthesized a series of thiosemi-
carbazide derivatives (5a-d) (Scheme-IV) and carried there in
silico study for anticancer activity. The synthesized ligands showed
the potential activity by affecting and hitting various targets like
epidermal growth factor receptor, tubulin receptor and also
carbonic anhydrase receptors displaying their anticancer action.
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Scheme-IV: Synthesis of 3,5-bis(trifluoromethyl)benzothiosemicarbazide
derivatives

Khalil et al. [90] synthesized thiosemicarbazide analogs
(6a-d) fused with nalidixic acid (Scheme-V). Nalidixic acid
on condensation with hydrazine gives the intermediates which
further were made to react with isothiocyanate in the presence
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of absolute ethanol to obtain the desired derivatives which
further were evaluated for anticancer activity. Among all these
tested analogs, compound having 3-methyl phenyl ring showed
good results against leukemia of cell line K-562 and SR sub-
panels with IC50 35.29 µM and 13.85 µM. The compound with
3-methyl phenyl ring substituent also gives good inhibitory
activity against topoisomerase IIα and topoisomerase IIβ when
compared to the standard inhibitors like doxorubicin and topo-
tecan with IC50 1.30 µM and 0.017 µM correspondingly.

Hussein et al. [91] synthesized and reported the cytotoxic
activity of thiosemicarbazone analogs (Scheme-VI). They
showed their cytotoxicity activity against three cancer cell lines
PANC-1, HCT-116, MCF-7 and one normal cell line NIH/3T3.
All these synthetic compounds showed cytotoxicity activity
against cancerous cells with IC50 values range between 0.7-
212.8 µM.

Nammalwar et al. [92] reported for the synthesis of novel
series of flexible heteroarotinoid (Flex-Het) derivatives
(Scheme-VII) and evaluated their anticancer activity against
the A2780 ovarian cancer cell lines. Compounds were synthe-
sized from isothiocyanate and they showed high action with
an IC50 value in the range of 1.86 to 4.70 µM with 85.6 and
95.9% efficacies, which are similar to or better than the lead
compound of IC50 3.17 µM, 84.3% viability. Rajendran et al.
[93] synthesized the thiosemicarbazone analogs copper (II)
complex on N(4)-substituents (Scheme-VIII). The ligands and
its metal complexes were screened by in vitro cytotoxicity
activity against the Hela cell line. All tested ligands and their
metal complexes showed percentages of cytotoxicity between
43 ± 0.12 to 89 ± 0.07 as compared with standard positive control
cisplatin 96 ± 0.01.

Gaber et al. [94] synthesized thiosemicarbazide derivatives
fused with 1H-pyrazolo[3,4-d]pyrimidine hybrid (Scheme-IX).
Ethoxy methylene malononitrile was refluxed with phenyl-
hydrazine, followed by hydrolysis with alcoholic NaOH to

O

O+
S

NH2 NH NH
R

O

N

NH

NH

S

R

AcOH, H2O

EtOH
reflux, 2 h
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Scheme-VIII: Synthesis of N(4)-substituted thiosemicarbazone derivatives

produce carboxamide derivative, which was then reacted with
methyl benzoate to give the intermediate compound and finally
reacted with hydrazine hydrate and isothiocyanates. The obtained
product was further screened for their inhibitory activity against
EGRFWT by in vitro method. All the tested compounds exhibited
significant antiproliferative activities against EGRFT790M cont-
aining cells with the IC50 value ranging between 0.35 ± 0.21
µM to 0.56 ± 0.19 µM, respectively. Geng et al. [95] synthesized
a novel series of thiosemicarbazide moieties containing [1,2,3]-
triazolo[4,5-d]pyrimidine derivatives (Scheme-X). They were
also evaluated for the antiproliferative activity against different
human cancer cell lines like PC-3, MGC-803, NCI-H1650.
Among them, N-benzyl-2-(3-benzyl-5-(prop-2-yn-1-yl thio)-
3H-[1,2,3]triazolo[4,5-d]pyrimidin-7-yl)hydrazine-1-carbo-
thioamide compound showed potential inhibitory activity
against MGC-803 malignant growth cells with IC50 value of
2.37 µM. The rest of the molecules showed moderate to good
effects against three screened malignant growth cell lines.

Wos et al. [96] synthesized a novel series of thiosemi-
carbazide with a 4-nitrophenyl substitution (Schemes XI and
XII) and also evaluated for antibacterial and antiproliferative
activities. The in vitro antibacterial effects were evaluated against
Gram-positive Staphylococcus aureus, Staphylococcus epider-
midis and micro-aerobic Gram-positive Streptococcus mutans,
Streptococcus sanguinis bacterial strains [97]. The antipro-
liferative activity was tested against different cell lines like
HepG2, A549, MCF-7, BJ cell [98]. It was observed that 2-
pyridine and 4-nitrophenyl derivatives exhibit antiproliferative
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effectiveness with IC50 range 2.53 ± 1.21 to 11.88 ± 3.91 µg/mL.
Among all of these synthetic compounds 2-chlorophenyl, 4-
nitrophenyl and 2,4-dichloro phenyl substituents showed good
antibacterial effects and compounds with 2,4-dichlorophenyl
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Scheme-XII: Synthesis of 4-nitrophenyl hybrid thiosemicarbazide deri-
vatives

substituents showed inhibitory impact against S. mutants with
MIC esteem 7.81 µg/mL, respectively. Zhang et al. [99] eval-
uated the anticancer effect and anti-proliferative action against
human hepatocellular liver carcinoma (HepG2) for the a novel
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series of chalcone thiosemicarbazide analogs (Scheme-XIII).
The para-substituted methyl group at ring B showed the most
powerful inhibitory effect, which hindered the development
of HepG2 cells with IC50 of 0.78 µM and inhibited the action of
EGFR kinase with IC50 of 0.35 µM, respectively [99]. Ðilovic
et al. [100] also synthesized unique thiosemicarbazone
derivatives (Scheme-XIV) and evaluated their anti-prolifera-
tive activity using the MTT test on five tumor cells like HeLa,
Hep-2, MCF-7, MiapaCa-2, SW-620. It was observed that all
compounds display potential antiproliferative activity against
all cancerous cells, the IC50 values range between 0.2 ± 0.2 to
4.7 ± 0.3 µM.
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Scheme-XIV: General synthetic procedure of thiosemicarbazone deriva-
tives

Zhang et al. [101] synthesized and evaluated the anticancer
activity against cisplatin-resistant neuroblastoma cells of the
two copper complexes viz. substituted 8-hydroxyquinoline-2-
carboxaldehyde-4,4-dimethyl-3-thiosemicarbazide copper(II)
(CuHQDMTS) and unsubstituted 8-hydroxyquinoline-2-carbox-

aldehyde thiosemicarbazide copper(II) complexes (CuHQTS).
Moreover, the terminal amino-subbed complex, CuHQDMTS,
indicated more potent anticancer activity than that of the unsub-
stituted complex, CuHQTS. In correlation, free HQDMTS and
HQTS ligands demonstrated no noteworthy development restraint
action on the SK-N-DZ cells. The IC50 values of CuHQDMTS
and CuHQTS reported were 0.13 ± 0.03 µM to 0.64 ± 0.03
µM, separately. Baldini et al. [102] synthesized R-ketoglutaric
acid thiosemicarbazone derivatives (Scheme-XVI) and reported
that their copper(II) complexes were more potent inhibitors
of cell growth of human leukemia cell line U937. The deriva-
tives with copper complex showed the inhibition activity of
35% with the inhibition of cell proliferation at the various phase
of the cell cycle like G1-53.5%, S-31.5% and G2-15.4%.
Further, 48 h treatment on leukemic cell line (U937) demon-
strated a delay in the cell cycle movement with a 28% decrease
of the DNA amalgamation (stage S) and with an expansion of
cell populace in the G1 and G2/M stages.

Antibacterial activity: Bisceglie et al. [103] synthesized
cinnamaldehyde thiosemicarbazone derivatives (Fig. 3) and
also reported their antibacterial activity against E. coli and K.
pneumonia strains. Among all the derivatives, compound bis-
(E)-cinnamaldehyde thiosemicarbazonate of Cu(II) (18) and
bis-(E)-cinnamaldehyde thiosemicarbazonate of Zn(II) (19)
showed minimum bactericidal concentration (MBC) in the
range of 8-30 µM. Lapasam et al. [104] synthesized and
evaluated in vitro antibacterial activity of a novel series of 4-
phenyl-1-(pyridine-4yl)ethylidene thiosemicarbazide with
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Fig. 3. Structure of metal complex of cinnamaldehyde thiosemicarbazone

complexes of rhodium, ruthenium and iridium metal ions
(Scheme-XVII). The antibacterial activity was done by using
the agar well diffusion method against Gram-negative bacteria
E. coli, K. pneumonia and Gram-positive bacteria S. aureus.
Antimicrobial action assessment uncovered that rhodium comp-
lexes have a huge antibacterial activity for all three strains,
iridium and p-cymene ruthenium complexes have demonstrated

directed action against the microorganisms yet none of the
complexes outperform the action of their reference drugs. Tittal
et al. [105] synthesized a novel hybrid molecules of 1,4-disub-
stituted-1,2,3-triazole with thiosemicarbazone derivatives
(Scheme-XVIII) and also evaluated their in vitro antibacterial
activity with a serial dilution method on Gram-negative bacteria
P. aeruginosa and E. coli and Gram-positive bacteria like B.
subtilis, S. enteric and S. aureus. All the tested compounds
(21a-d) showed good results against the bacterial strains with a
MIC value range between 0.0141 to 0.1366 µm/mL. Moreover,
compound 21c demonstrated the better effect for both S. aureus
and S. enteric with MIC 0.0281 µmol/mL, compared with stan-
dard drug ciprofloxacin (MIC 0.0366 and 0.0732 µmol/mL)
[105].

Bahojb-Noruzi et al. [106] synthesized a novel series of
t-butylcalixarene based thiosemicarbazone derivatives (Scheme-
XIX) and evaluated antifungal, antibacterial, anticancer
activities. An impressive antibacterial potential effect
(specifically against E. coli, MIC and MBC = 31.25 µg/mL)
was observed for the compounds. The antifungal activity was
evaluated against fungi strains like C. albicans and C. glabrata.
Good antifungal activity was observed against yeast C. albicans
for the ligand with values of MIC = 31.25 µg/mL and MBC =
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Scheme-XVII: Synthesis of 4-phenyl-1-(pyridine-4-yl)ethylidene thiosemicarbazide complexes
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Scheme-XIX: Synthesis of tert-butyl-calix arene-based thiosemicarbazone analogous

125 µg/mL and MIC value of 62.5 µg/mL for its Co(II) complex
was higher when compared with the ligand. The in vitro cyto-
toxicity activity was investigated with the help of an MTT
reduction assay against two different human bone cancer cell
lines (Saos-2 and MG-63). All compounds show cytotoxicity
against the malignant cells. For Saos-2 cell line, the promising
anticancer action of ligand (IC50 < 25 µg/mL) was higher when
compared with the value of its metal complexes. Polo-Ceron
[107] synthesized and evaluated in vitro antibacterial activity

of a new series of copper(II) and nickel(II) complexes with
tridentate thiosemicarbazone ligands H2L1 and H2L2 synthe-
sized from 2-acetyl pyrazine (Scheme-XX). The result showed
that best outcomes were acquired for copper complexes with
MIC estimations of 3.9 µg mL–1 for S. aureus and B. cereus
strains.

Patel et al. [108] reported for the synthesis and antibac-
terial activity of novel series of 2-(4-morpholino quinoline-7-
yl)-N-substituted phenyl hydrazinyl carbothioamide analogs
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(Scheme-XXI). All the synthesized compounds display a good
antibacterial activity against all pathogen strains with MIC
values in the range of 62.5-500 µg/mL. Among all the synthe-
sized analogs, one containing methyl-substitution in its phenyl
ring showed incredible action against Gram-negative strains,
while analogs with electron-withdrawing substituents like
chloro, fluoro and also the unsubstituted phenyl ring showed
moderate action against Gram-negative strains. Kaplanciki et al.
[109] synthesized and evaluated the antibacterial activity of a
novel series of thiosemicarbazone analogs (Scheme-XXII).
Among all the tested compounds, the 4-trifluoro, 4-fluoro and
4-nitro substituted derivatives showed the most effective inhib-
itory effect against S. aureus and E. faecalis pathogen with a
MIC value of 100 µg/mL, respectively.

 
Cl

Cl N
+

O

N
H

N

Cl N

O

N

NH N

O

NH2

R
N

S

N

NH N

O

NHNH

S
R

NH2NH2.H2O

0-5°C, 1-2 h 1,4-Dioxane,
CuCl,K2CO3,

 Reflux,
 THF,
 3-4 h

R= H, 2-Cl, 3-Cl, 4-Cl, 2-CH3, 3-CH3, 4-CH3, 2-F, 3-F, 4-F 

Cl

Cl

24a-j

Scheme-XXI: Synthesis of 4,7-dichloroquinoline hybrid thiosemicarbazide derivatives
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Khan et al. [110] synthesized thiosemicarbazone derivatives
fused with steroidal rings (Scheme-XXIII) and also reported
for their in vitro antibacterial activity. The synthesized comp-
ounds showed the minimum inhibitory concentration (MIC)
value in the range of 32-256 µg mL-1. The in vitro examination
results also demonstrated that the compounds with chloro and
acetoxy subordinates were found to be more effective among all
the derivatives of thiosemicarbazone synthesized. Abou-Melha
[111] evaluated the antibacterial and antifungal activity of syn-
thesized metal complex of compound N4-(7-chloroquinoline-
4-ylamino)-N1-(2-hydroxy-benzylidene)thiosemicarbazone
(Scheme-XXIV). It was observed that the metal complexes
of these compounds exhibited significant biological activity.

R O

C8H17

NH2

NH
R

1

S

HCl.C2H5OH

R= OAc, Cl, H
R1= Cyclopentyl amine, cyclohexyl amine, cyclooctyl amine

S

NR
NH R

1

C8H17

26

Scheme-XXIII: Synthesis of steroidal rings contains thiosemicarbazone
derivatives
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Saleem et al. [112] synthesized a novel series of steroidal
thiazolo quinoxaline derivatives (Scheme-XXV). All these
synthetic derivatives were screened by in vitro method for
antibacterial activity against E. coli with the help of the disk
diffusion method. Compound having 3β-chloro substituent
showed antibacterial effects having a zone of inhibition of 1.6
mm. Parekh et al. [113] synthesized a series of 1-[(2-hydroxy-
4-isopropoxy-5-nitrophenyl)-ethanone]-4-(aryl)-3-thiosemi-
carbazones derivatives (Scheme-XXVI). Compound having
fluorine substitution showed  the maximum antibacterial effects
against all the species of pathogen, the observed zone of inhibi-
tion for the same was found to be 13 mm. Agarwal et al. [114]
synthesized analogs of Schiff bases having 4-aminoantipyrine
and different aromatic aldehyde with the help of condensation
reaction with thiosemicarbazide and further evaluated for the
antibacterial and antifungal activities. Copper(II) complexes
of 4[N-(benzylidene)amino]antipyrine thiosemicarbazone (30)
and 4[N-(4-methoxybenzalidene)aminoantipyrine thiosemi-
carbazone (31) (Fig. 4) were  also evaluated for antibacterial
activity against Gram-positive bacteria B subtilis and S aureus
and Gram-negative bacteria E. coli and S. typhi. Copper(II)
complexes of 4[N-(4-methoxybenzalidene)aminoantipyrine
thiosemicarbazone (31) showed the best antibacterial activity
than the copper(II) complex of 4[N-(benzylidene)amino]anti-
pyrine thiosemicarbazone (30) . All derivatives showed almost
similar antifungal activity but less than salicylic acid, a standard
drug. El-Dissouky & Jeragh [115] reported the antibacterial
activity of 1-acetylferrocene thiosemicarbazone (32) and 1,10-
diacetylferrocene dithiosemicarbazone (33) (Fig. 5). It was
found that the inhibition effects of compound 33 were higher
than the inhibition effect of compound 32 both in bacterial as
well as in fungal.

Antiurease activity: Shehzad et al. [116] reported the
synthesis and urease inhibitory activity of a novel series of
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1,4-benzodioxane-based thiosemicarbazone derivatives
(Scheme-XXVII). It was reported that the urease enzyme gives
a reasonable climate to Helicobacter pylori at low pH in the
stomach, a causative specialist of peptic and ulcer gastric that
may prompt disease [117,118]. The tested molecules showed
maximum intense inhibitory potential with IC50 esteems exten-
ding between 3.65 ± 2.64 to 31.9 ± 1.094 µM, when compared
to the value of reference compound, thiourea with the value
of IC50 as 20.8 ± 0.75 µM. Mentese et al. [119] synthesized a
novel series of thiosemicarbazide containing quinazolinone
analogs (Scheme-XXVIII). The tested compounds showed good
potential inhibition effect against urease enzyme, the IC50 value
ranged in between 6.00 ± 0.25 to 6.42 ± 0.23 µg/mL, values
were also compared to standard reference thiourea (IC50 = 15.06
± 0.68 µg/mL) and acetohydroxamic acid (IC50 = 21.03 ± 0.94
µg/mL).
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Scheme-XXV: Synthesis of steroidal thiazolo quinoxaline derivatives
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Ali et al. [120] synthesized and evaluated the in vitro urease
inhibitory activity of a novel series of 1-[(4′-chlorophenyl)-
carbonyl-4-(aryl) thiosemicarbazide analogs (Scheme-XXIX).
The majority of the synthesized compounds showed incredible
inhibitory effects in the scope of IC50 0.32 ± 0.01 µM to 25.13
± 0.13 µM when contrasted with the standard thiourea (IC50

21.25 ± 0.13 µM). Out of all analogs, 2,4-dimethoxyphenyl
substituted compounds showed remarkable strength with an
IC50 value of 0.32 ± 0.01 µM.

Anti-inflammatory activity: El-Kerdawy et al. [121]
synthesized thiosemicarbazide derivatives fused with benzimi-
dazole and thiazole ring (Scheme-XXX). Synthesized comp-
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ounds were also screened for anti-inflammatory properties by
the in vitro method through the cyclooxygenase enzyme inhibi-
tion test, or in vivo through carrageenan paw edema procedure.
The result observed was % hindrance of 72.19 %, 72.07% for
the COX-1 enzyme and value of 87.46%, 87.38% for COX-2,
individually. Alfadly et al. [122] synthesized a novel series of
tacrine hybrid thiosemicarbazide derivatives (Scheme-XXXI)
and evaluated their anticholinesterase and anti-inflammatory
activities. Among the synthesized ligands, a compound having
benzyl substituent was found to have the value of IC50 as 0.218
± 0.035 µg/mL as with higher inhibitory effect than the reference
inhibitors tacrine (for hBChE hindrance), celecoxib (for COX2
restraint) and both NDGA and Zileuton (for 15-LOX restraint).
Moreover, benzyl derivatives indicated a sub-micromolar blended
sort inhibitory effect against human acetylcholinesterase (hAChE)
also.
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Scheme-XXXI: Synthesis of tacrine hybrid thiosemicarbazide derivatives

Anti-HIV activity: Patel et al. [123] synthesized a novel
series of quinazolinyl-triazinyl semicarbazides and quinazo-
linyl-triazinyl thiosemicarbazides derivatives (Scheme-XXXII).
4-(4-Chloro-6-hydrazinyl-s-triazin-2-yl)morpholine was reacted
with N-(2-aminoethyl)-6,8-dibromoquinazolin-4-amine in the
presence of dry acetonitrile for 12-20 h, which further were
reacted with isothiocyanates in the presence of ethanol for 4-6 h
for obtaining the desired products. All these synthetic comp-
ounds were then evaluated for anti-HIV activity against HIV-1
(lllB) and HIV-2 (ROD) cell cultures, for which obtained IC50

values ranges between 49.13 to 125 µg/mL. It was observed
that compounds having 4-fluoro phenyl substituents displayed
utmost activity with IC50 of 49.13 µg/mL.

Antituberculosis activity: Trotsko et al. [124] synthesi-
zed a novel series of thiazolidine-2,4-dione (TZD) based thio-

semicarbazone analogs (Scheme-XXXIII). All the synthesized
compounds were evaluated for antimycobacterial activity against
Mycobacterium tuberculosis with the help of the broth micro-
dilution process. 4-Aryl substituted derivative showed moderate
effect when compared to 4-unsubstituted thiosemicarbazone
substituents with TZD. All compounds showed inhibitory
effects with the concentration range of 0.031-64 µg/mL. The
4-unsubstituted thiosemicarbazone substituents with TZD
showed the maximum antimycobacterial effects with MIC of
0.031-0.125 µg/mL.

Antifungal activity: Hicks et al. [125] synthesized a novel
series of thiosemicarbazones containing boronic acids and cyclic
2,3,1-benzodiazaborines (Schemes XXXIV and XXV). The
synthetic compounds were further evaluated for antifungal
activity against Aspergillus niger, Aspergillus flavus, Candida
albicans and Saccharomyces cerevisiae. Among all of these
synthetic derivatives, compounds 41a, 41b and non-cyclized
imine derivatives 42d displayed an effective antifungal activity.

Antiplatelet activity: Al-Saad et al. [126] synthesized a
novel series of thiosemicarbazide derivatives of captopril
(Scheme-XXXVI). These ligands were obtained by the reaction
of hydrazide of captopril with different substitutions of phenyl
isothiocyanate. The captopril shows a significant role in angio-
tensin converting enzyme inhibitors (ACE-I) and these synth-
etic derivatives were screened for antiplatelet effect utilizing
multiple analyzers and adenosine diphosphate (ADP), arachi-
donic corrosive (AA) and collagen, as platelet total inducers.
Among all of these screened compounds, 3-ethylthio and 3-
mercapto substitutes were the most active inhibitors of platelet
collection incited by arachidonic corrosive, with percent hind-
rances value of 97.14 ± 1.0 and 95.71 ± 2.02 and IC50 values
as 2.7 and 1.21 µg/mL.

Anthelmintic activity: Dziduch et al. [127] synthesized
a novel series of 1-[(1-methyl-4-nitroimidazol-2-yl)carbonyl]-
4-substituted thiosemicarbazides derivatives (Scheme-XXXVII)
and also evaluated for in vitro anthelmintic activity against
Rhabditis sp. Most of the compounds showed the anthelmintic
activity, but derivatives with phenyl, ortho-chlorophenyl and
meta-chlorophenyl substituents were more potent than the
reference drug, albendazole.

Antimalarial activity: Matsa et al. [128] synthesized
different types of thiosemicarbazone derivatives (Scheme-
XXXVIII) and evaluated for in vitro antimalarial activity
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Scheme-XXXII: Synthesis of quinazoline triazinyl thiosemicarbazides analogs
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Scheme-XXXIII: Synthesis pathway of TZD-based thiosemicarbazone derivatives

against Plasmodium falciparum. The ligands containing 4-
fluorophenyl, 3-bromophenyl and 3,4,5-trimethoxybenzyli-
dene substituted demonstrated prominent antimalarial effects
with EC50 estimations of 13.54, 15.83 and 14.52 µM, respec-
tively.

ααααα-Glucosidase activity: Rahim et al. [129,130] synthe-
sized and evaluated the α-glucosidase activity of a novel series
of isatin-based thiosemicarbazide analogs (Scheme-XXXIX).
All the synthesized compounds showed more potential α-gluco-
sidase inhibitory effects the IC50 value range between 1.20 ±
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derivatives
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Scheme-XXXVI: Synthesis of captopril thiosemicarbazide derivatives
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Scheme-XXXVII: Synthesis of 1-[(1-methyl-4-nitroimidazol-2-yl)carbonyl]-
4-substituted-thiosemicarbazides derivatives
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Scheme-XXXVIII: Synthesis of thiosemicarbazone derivatives
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Scheme-XXXIX: Synthesis of isatin-based thiosemicarbazide derivatives

0.10 to 35.60 ± 0.80 µM, but among all of these the compound
N-(2,3-dichlorophenyl)-2-(5-nitro-2-oxoindolin-3-ylidene)-
hydrazine-1-carbothioamide displayed a significant role with
IC50 = 1.20 ± 0.10 µM.

Antileishmanial activity: Almeida-Batista et al. [131]
synthesized a novel series of S-(-) and R-(+) limonene-based
benzaldehyde thiosemicarbazones derivatives (Scheme-XL).
And these were further evaluated for antileishmanial activity
against in vitro cultures of the promastigote forms of L. amazo-
nensis. The compound 4-nitro derivative showed excellent
antiprotozoal activity with IC50 of 2.4 µM.

Anti-trypanosoma cruzi activity: Leite et al. [132] synthe-
sized a series of 4-thiazolidone-2-arylthiosemicarbazone deriv-
atives (Scheme-XLI) and evaluated the in vitro anti-trypanosoma
cruzi activity against epimastigote (Y and Colombian strain).
Some derivatives can exhibit the anti-trypanosoma cruzi
activity. Among all of these derivatives N-(4-oxo-5-methyl-2-
thiazoline-2yl)-N-p-chlorophenylthioethylidenehydrazone
(IC50 = 31.9) shows a potential effect against epimastigote T.
cruzi.

Antiamoebic activity: Abid & Azam et al. [133] synthe-
sized 1-N-substituted cyclized pyrazoline derivatives of thiosemi-
carbazones (Scheme-XLII). These were further evaluated for
the antiamoebic activity against HM1:1MSS strain of Enta-
moeba histolytica with help of the microdilution method. The
3-chloro and 3-bromo substituents on the phenyl ring at
position 3 of the pyrazoline ring were reported to show more
potential effects of anti-amoebic activity than unsubstituted
phenyl ring. The effective anti-amoebic activity was shown
with IC50 = 0.6 µM when compared to IC50 = 1.8 µM of
metronidazole.

Antityrosinase activity: Chaves et al.  [134] synthesized
and evaluated tyrosinase inhibitory activity of a novel series
of β-enamino thiosemicarbazide derivatives (Scheme-XLIII).
Both compounds i.e. (Z)-2-(3-(phenethylamino)-but-2-enoyl)-
hydrazine carbothioamide (ETS1) and (Z)-N-methyl-2-(3-
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(phenethylamino)-but-2-enoyl)hydrazine carbothioamide
(ETS2) were tested for their activity against tyrosinase enzyme.
Only one compound (ETS1) was found to have an excellent
inhibition activity percentage (89%) of the tyrosinase enzyme,
with an IC50 value of 49 µM.

Conclusion

The literature summarized in this review paper concludes
that thiosemicarbazide derivatives with a variety of applications
can be synthesized by a large number of novel synthetic schemes.
A review on thiosemicarbazide has described that the modi-
fications in the structure of ligand moieties can bring change
and can also enhance particular activity possessed by the nucleus.

 

H H
N

S

H S
NH

NHNH2

H

H

S

NH NH
N Ra b c

(a) KHSO4, KSCN, CHCl3, rt, 24 h; (b) NH2NH2·2HCl/NaHCO3/H2O, EtOH, reflux, 3 h; (c) RCHO, SiO 2/H2SO4 5%, rt 

R= H, 2-NO2, 3-NO2, 4-NO2, 2-Cl, 3-Cl, 4-Cl, 4-CH3, 4-OCH3, 4-N(CH3)2 , 2-OH, 4-OH, 3-OCH3,
  4-OH 

47a-n

Scheme-XL: Synthesis of limonene-based benzaldehyde thiosemicarbazones derivatives
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Scheme-XLI: Synthesis of 4-thiazolidone-2-arylthiosemicarbazone derivatives
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Scheme-XLII: Synthesis of cyclized pyrazoline analogs of thiosemicarbazones
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Scheme-XLIII: General synthesis of β-enamino thiosemicarbazide derivatives ETS1 and ETS2

The latest advances in the pharmaceutical domain have given
a lot of consideration to the development of thiosemicarbazide
ligands. Different synthetic schemes identified with a large
number of biological activities may result in path-breaking
exploration of potential derivatives of thiosemicarbazide with
other new probable targets.
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