


# Synthesis and Characterization of [CrLCl<sub>2</sub>]Cl Complexes (where L = S<sub>4</sub> Macrocyclic Ligands): A Photoelectron Spectroscopic Study

KRISHNA KUMAR YADAV<sup>1</sup>, ANIL KUMAR<sup>1</sup>, MOHD KASHIF AZIZ<sup>2</sup>, RAFAT SABA<sup>2</sup>, ASHISH RAJAK<sup>2</sup> and Shekhar Srivastava<sup>2,\*</sup>

<sup>1</sup>Department of Chemistry, Bipin Bihari P.G. College, Jhansi-284002, India <sup>2</sup>Department of Chemistry, University of Allahabad, Allahabad-211002, India

\*Corresponding author: E-mail: shekhsri@rediffmail.com

| Received: 3 October 2019; | Accepted: 11 January 2020; | Published online: 29 April 2020; | AJC-19841 |
|---------------------------|----------------------------|----------------------------------|-----------|
|                           |                            |                                  |           |

In this study, five complexes of the type  $[CrLCl_2]Cl$  [where  $L = S_4$  macrocyclic ligands] were prepared and analyzed by elemental analysis, molar conductivity, infrared and X-ray photoelectron spectroscopy and their geometry was established as octahedral.

Keywords: Chromium, S<sub>4</sub> macrocyclic ligands, X-ray photoelectron spectroscopy.

### **INTRODUCTION**

The coordination chemistry of macrocyclic ligands and their metal complexes has current interest among chemists and biochemists [1-5]. They have wide applications since they provide stable and selective complexes with many organic and inorganic cations; anions and with neutral organic and biological substractes to form supramolecular compounds with specific properties [6,7]. Schiff base macrocyclic ligands have been proved very useful in inorganic biochemistry material science, catalysis, encapsulation, activation, electron-transport [8,9]; non-linear optical materials [10,11]; biosites modeling [12]; catalysis for many organic reactions [13]; as catalyst in asymmetric synthesis [14] and as luminescence materials [15,16].

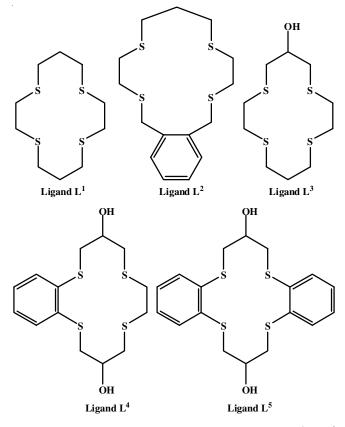
Recently asymmetric heptaza Schiff base macrocyclic Mn(II) complexes was synthesized by template [1+1] cyclocondensation of N,N,N',N'-*tetrakis*(2-aminothyl) propane-1,2diamine-1,2-diamine with 2,6-diacetylpyridine-1,2-diamine with 2,6-diacetylpyridine [17,18]. Various tetraazamacrocyclic ligands and their metal complexes have been also synthesized *e.g.* [14]aneN<sub>4</sub> and [12]aneN<sub>4</sub> [19-24]. Keypour *et al.* [25,26] reported a synthesis of a novel series of pentaaza macrocyclic complexes. The hexaazamacrocyclic macrocyclic were also synthesized and found to be versatile since they can coordinate with one or two metal ions [27]. Recently, a hexaazamacrocyclic ligand having four ethyldioxolane pendant groups and their

metal complexes with Zn(II), Cd(II), La(III), Ce(III), Nd(III), Sm(III), Eu(III), Ho(III) have been synthesized [27]. Hexaazamacrocyclic complexes having pendant arm by template condensation of 1,2-phenlenediamine and 1,4-phenediamine through formaldehyde in the presence of transition metal have been synthesized [28]. Octaazamacrocycles were also synthesized and have been proved useful since it can form mono or dinuclear metal complexed due to having large cavity [29]. A variety of macrocyclic complexes were formed by condensation of hydrazine or hyrazone with dicarbony compounds [30,31]. Covalently linked azamacrocycles have been known for several decades but only a modest number of these ligands and their complexes had been synthesized prior to 2000. Since that time, a number of new synthetic methods for their preparation have been discovered, yielding a growing collection of these ligands. During last few decades synthesis and applications of linking azamacrocyclic ligands and their metal complexes have been studied comprehensively [2].

Synthesis and characterization of neutral macrocyclic tetraimine complexes of transition metals; super-structured macrocyclic aldehyde or ketone functionalized tetraimines; superstructured neutral macrocyclic functionalized tetraimines and synthesis and characteristics of mixed *bis*-macrocycles with neutral and charged macrocyclic components have been studied comprehensively [4]. The transition and post-transition metal ion chemistry of pentadentate dibenzo-substituted macrocyclic lingands having nitrogen, sulphur or oxygen donors have

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

been well studied [5]. The hydrogen-bonded nanometer scale capsules formation from *C*-methylresorcin[4]arene have arised a new area of research in macrocyclic chemistry and studied well [3]. These macrocyclic metal complexes may be useful in study electrochemical behaviour, stereochemistry, effect on antiviral, anticancer, antituberculosis, antibacterial and antifungal, catalytic and biophysical properties, sensor devices, fluorescence and chemolumiscence properties.


The sulphur atom as a donor to transition metals is very well studied [32]. The sulphur atom act as sulfide ion ( $S^{2-}$ ) or as mercaptide ion (RS<sup>-</sup>) or as thiother (RSR) [32-34]. Macrocyclic tetrathioethers such as [16]aneS<sub>4</sub>, [16]aneS<sub>4</sub>, [14]aneS<sub>4</sub> and [12]aneS<sub>4</sub> have become more significant in last decade because they give low oxidation state metal sulphur sites in metal catalyzed processes since more diversity in chemical [35-37] and biological systems [38,39]. During last few decades complexes with tetraaza [40-42], dioxotetraaza [43,44], tetraoxotetraaza [45], tetraoxooctaaza [46] and trioxotetraaza were well studied. The amide macrocyclic ligands are significant since their metal complexes work as porphyrin analogues in catalyzing organic oxidations. Comparatively less research work has been done on macrocyclic complexes having N<sub>4</sub>S<sub>4</sub> potential donors [47-49]. Recently macrocyclic complexes of Cr(II) [50,51], Cr(III) [52-54] and Cr(V) [55] are reported with N<sub>4</sub> macrocyclic ligands but Cr(III) complexes with S<sub>4</sub> macrocyclic ligands are scare. This paper deals with synthesis and characterization of [CrLX2]X complexes with tetradentate ligands with thioethers as donor as *i.e.* [14]aneS<sub>4</sub>; 13,14-benzo-1,4,8,11- tetrathiacyclopentadecane [14]aneS<sub>4</sub>-diol; 4,5-benzo-3,6,10,13-tetrathiacyclotetradecane-1,8-diol and 6,18-dihydroxy-1,4,8,11-tetracyclotetradecane-1,8-diol.

### **EXPERIMENTAL**

All used solvents were purchased from E. Merck (AR grade) or Ranbaxy (AR grade) and used after purification and drying by conventional methods.  $CrCl_3 \cdot xH_2O$  were purchased from Aldrich (AR grade). Other chemicals *e.g.* 2-chloroethanol (Loba), thiourea (Aldrich), 3,7-dithianonane-1-dithiol (Aldrich), 1,3-propanedithiol, 1,11-dioxa-4,8-dithiaundecane, anhydrous MgSO<sub>4</sub>, 1,3-dibromopropane, 1,4,8,11-tetrathiaundecane, 1,3-dichloro-2-propanol,  $\alpha, \alpha'$ -dibromo-*o*-oxylene, epichlorophydrin, 1,2-ethanedithiol, triethylamine, 1,10-dichloro-4,7-dithiadecane 2,9-diol and 5,6-benzo-1,10-benzene-1,2-dithiol (all procured from BDH) were used after purification and dried by conventional methods.

The melting point of the synthesized complexes were recorded on electrically operated melting point apparatatus (M/ s Toshniwal) and value recorded are uncorrected. The elemental analysis were conducted at C.D.R.I., Lucknow, India. The molar conductance of the complexes were calculated at room temperature in DMF by Century CC-601 Conductivity bridge. The IR spectra of the complexes and the ligands were recorded on Shimadzu IRAffinity-1S spectrometer at room temperature in KBr or CsI. The X-ray photoelectron spectra *i.e.* XPS were recorded on JEOL-JPS-9030 photoelectron spectrometer. The AlK $\alpha$  X-ray line (1486.6 eV) was used for photo excitation.

**Preparation of ligands**: All the ligands viz., 1,4,8,11-Tetrathiacyclotetradecane (L<sup>1</sup>); 13,14-benzo-1,4,8,11- tetrathiacyclopentadecane  $(L^2)$ ; 1,4,8,11-tetrathiacyclotetradecanol  $(L^3)$ ; 4,5-benzo-3,6,10,13-tetrathiacyclotetradecane-1,8-diol  $(L^4)$  and dibenzo substituted 6,18-dihydroxy-1,4,8,11-tetrathiacyclotetradecane-1,8-diol  $(L^5)$  were synthesized by reported procedure [56,57]. The structure of the synthesized ligands is shown below:



Synthesis of [CrLX<sub>2</sub>]X complexes (where  $L = L^1$  or  $L^2$ or  $L^3$  or  $L^4$  or  $L^5$ ): To a solution of CrCl<sub>3</sub>·xH<sub>2</sub>O (0.1 mmol) in dry C<sub>2</sub>H<sub>5</sub>OH was mixed (0.1 mmol) in a above synthesized ligand ( $L^1$  or  $L^2$  or  $L^3$  or  $L^4$  or  $L^5$ ) in dry C<sub>2</sub>H<sub>5</sub>OH solution and refluxed for 2-5 h. The solid product was obtained, filtered, washed with dry C<sub>2</sub>H<sub>5</sub>OH and dried over P<sub>4</sub>O<sub>10</sub>.

#### **RESULTS AND DISCUSSION**

All the newly synthesized [CrLX<sub>2</sub>]X complexes were yellowish white solid and stable at room temperature. The melting points, yields, elemental analysis and molar conductance data are listed in Table-1. The molar conductance in DMF 100-120 ohm<sup>-1</sup> cm<sup>2</sup> mol<sup>-1</sup> of these complexes (Table-1) indicated that all these were electrolyte (1:1) [58]. All the prepared ligands exhibited v(C-S) band at 1050-1040 cm<sup>-1</sup>, which have shown one band in all prepared these [CrLX<sub>2</sub>]X metal complexes with high intensity towards higher side (1100-1080 cm<sup>-1</sup>) [59]. The presence of new bands in metal complexes at 380 and 355 cm<sup>-1</sup> attributed as due to v(Cr-Cl) and at 350 cm<sup>-1</sup> as due to v(Cr-S) [60].

The Cr  $2p_{1/2, 3/2}$ ; Cl 2p and S 2p binding energies (eV) data of [CrCl<sub>3</sub>·xH<sub>2</sub>O] and [CrLX<sub>2</sub>]X where L= (L<sup>1</sup> or L<sup>2</sup> or L<sup>3</sup> or L<sup>4</sup> or L<sup>5</sup>) are listed in Tables 2 and 3 (Fig. 1). It might be seen that Cr  $2p_{1/2, 3/2}$  photoelectron peaks binding energy value were observed in CrCl<sub>3</sub>·xH<sub>2</sub>O at Cr  $2p_{1/2} \approx 585.6$  eV and Cr  $2p_{3/2}$  =

Vol. 32, No. 5 (2020) Synthesis and Characterization of [CrLCl<sub>2</sub>]Cl Complexes (L = S<sub>4</sub> Macrocyclic Ligands): A Photoelectron Spectroscopic Study 1099

| TABLE-1<br>ELEMENTAL ANALYSIS AND MOLAR CONDUCTANCE [CrLX <sub>2</sub> ]X COMPLEXES (WHERE L <sup>1</sup> TO L <sup>5</sup> ) |           |            |                                        |           |             |                   |             |                            |
|-------------------------------------------------------------------------------------------------------------------------------|-----------|------------|----------------------------------------|-----------|-------------|-------------------|-------------|----------------------------|
| Complexes m.p. (°C)                                                                                                           |           | Yield (%)  | Elemental analysis (%): Found (calcd.) |           |             | Molar conductance |             |                            |
| Complexes m.p. (°C)                                                                                                           | m.p. ( C) | 1 leiu (%) | С                                      | Н         | S           | Cr                | Cl          | $(ohm^{-1} cm^2 mol^{-1})$ |
| [CrL <sup>1</sup> Cl <sub>2</sub> ]Cl                                                                                         | 180       | 75         | 42.4 (42.5)                            | 4.6 (4.8) | 20.4 (20.6) | 12.2 (12.0)       | 24.9 (24.8) | 112                        |
| [CrL <sup>2</sup> Cl <sub>2</sub> ]Cl                                                                                         | 178       | 84         | 44.2 (44.4)                            | 5.0 (5.2) | 19.6 (19.7) | 10.6 (10.4)       | 21.8 (21.4) | 120                        |
| [CrL <sup>3</sup> Cl <sub>2</sub> ]Cl                                                                                         | 185       | 87         | 42.4 (42.6)                            | 4.4 (5.2) | 20.4 (20.6) | 14.7 (14.6)       | 30.2 (30.0) | 112                        |
| [CrL <sup>4</sup> Cl <sub>2</sub> ]Cl                                                                                         | 192       | 88         | 44.2 (44.4)                            | 5.2 (5.2) | 19.6 (19.7) | 10.6 (10.4)       | 21.8 (21.6) | 114                        |
| [CrL <sup>5</sup> Cl <sub>2</sub> ]Cl                                                                                         | 196       | 86         | 43.2 (43.2)                            | 5.2 (5.3) | 18.2 (18.4) | 10.0 (10.0)       | 20.6 (20.4) | 118                        |

576.6 eV and in metal complexes at Cr  $2p_{1/2} = 584.6$  eV and Cr  $2p_{3/2}$ = 575.6 eV, which is less about ~1 eV than CrCl<sub>3</sub>·xH<sub>2</sub>O (Fig. 1a-b and Table-2). It suggested that chromium ion had more electron density in [CrLX<sub>2</sub>]X complexes than [CrCl<sub>3</sub>·xH<sub>2</sub>O] due to involvement of metal ion in coordination [61]. Further, S 2p photoelectron peak have shown only one symmetrical peak in [CrLX<sub>2</sub>]X complexes at ~BE 167.8 eV while in free ligands at ~166.4 eV, which was lower than in metal complexes, suggestion all four sulphur atoms are coordinated with chromium metal ion (Table-3 and Fig. 1c). The Cl 2p photoelectron peaks in each ligand have shown one single photoelectron peak at ~202.4 eV, while in each metal complex has shown two peaks with intensity ratio 2:1 at 203.8 eV and 202.6 eV which were assigned as inner and outer sphere chloride ion photoelectron peaks respectively. These observations concluded that two chloride ions were coordinated to chromium metal ion and one chloride ion was in outer sphere of each metal complex [61].

## Conclusion

On the basis of elemental analysis, molar conductance measurements, infrared and X-ray photoelectron spectral data and the subsequent discussion for the complexes given above, the structure and an octahedral geometry may be proposed

| TABLE-2<br>Cr 2p <sub>1/2.3/2</sub> BINDING ENERGIES (eV) IN<br>CrCl <sub>3</sub> ·xH <sub>2</sub> O AND [CrLCl <sub>2</sub> ]Cl COMPLEXES |                      |                      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|--|--|
| Compound                                                                                                                                   | Cr 2p <sub>1/2</sub> | Cr 2p <sub>3/2</sub> |  |  |
| CrCl <sub>3</sub> ·xH <sub>2</sub> O                                                                                                       | 585.60               | 576.6                |  |  |
| $[CrL^{1}Cl_{2}]Cl$                                                                                                                        | 584.6                | 575.6                |  |  |
| [CrL <sup>2</sup> Cl <sub>2</sub> ]Cl                                                                                                      | 284.6                | 575.6                |  |  |
| [CrL <sup>3</sup> Cl <sub>2</sub> ]Cl                                                                                                      | 284.6                | 575.6                |  |  |
| [CrL <sup>4</sup> Cl <sub>2</sub> ]Cl                                                                                                      | 284.6                | 575.6                |  |  |
| [CrL <sup>5</sup> Cl <sub>2</sub> ]Cl                                                                                                      | 284.6                | 575.6                |  |  |

|                                                    | TABLE-3 |             |  |  |  |
|----------------------------------------------------|---------|-------------|--|--|--|
| S2p BINDING ENERGIES (eV) IN LIGAND AND [CrLCl2]Cl |         |             |  |  |  |
| Ligand and complex                                 | S2p     | Cl 2p       |  |  |  |
| Ligand L <sup>1</sup>                              | 166.4   | 202.4       |  |  |  |
| [CrL <sup>1</sup> Cl <sub>2</sub> ]Cl              | 167.8   | 202.6-203.8 |  |  |  |
| Ligand L <sup>2</sup>                              | 166.4   | 202.4       |  |  |  |
| [CrL <sup>2</sup> Cl <sub>2</sub> ]Cl              | 167.8   | 202.6-203.8 |  |  |  |
| Ligand L <sup>3</sup>                              | 166.4   | 202.4       |  |  |  |
| [CrL <sup>3</sup> Cl <sub>2</sub> ]Cl              | 167.8   | 202.6-203.8 |  |  |  |
| Ligand $L^4$                                       | 166.4   | 202.4       |  |  |  |
| $[CrL^4Cl_2]Cl$                                    | 167.8   | 202.6-203.8 |  |  |  |
| Ligand $L^5$                                       | 166.4   | 202.4       |  |  |  |
| [CrL <sup>5</sup> Cl <sub>2</sub> ]Cl              | 167.8   | 202.6-203.8 |  |  |  |

for these complexes as shown in Fig. 2 for all these prepared [CrLCl<sub>2</sub>]Cl complexes.

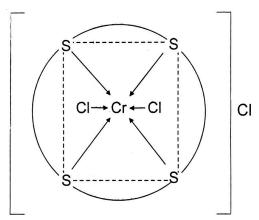
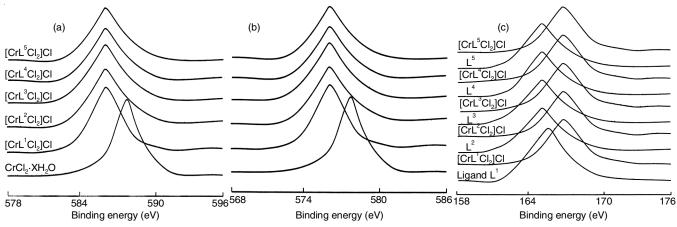




Fig. 2. Proposed octahedral geometry structure of [CrLCl2]Cl complexes

# ACKNOWLEDGEMENTS

The authors are thankful to C.S.I.R., New Delhi and U.G.C., New Delhi, India for financial supports.



 $Fig. \ 1. \ Cr \ 2p_{1/2} BE \ (eV) \ in \ CrCl_2 \cdot xH_2O \ (a); \ Cr \ 2p_{3/2} BE \ (eV) \ in \ CrCl_3 \cdot xH_2O \ (b) \ and \ S \ 2p \ BE \ (eV) \ in \ ligands \ (c) \ and \ their \ [CrLCl_2]Cl \ complexes \ CrLCl_2]Cl \ complexes \$ 

# **CONFLICT OF INTEREST**

The authors declare that there is no conflict of interests regarding the publication of this article.

#### REFERENCES

- E.K. Barefield, Coord. Chem. Rev., 254, 1607 (2010); https://doi.org/10.1016/j.ccr.2010.03.007
- J.C. Timmons and T.J. Hubin, *Coord. Chem. Rev.*, 254, 1661 (2010); https://doi.org/10.1016/j.ccr.2009.09.018
- R.E. Mewis and S.J. Archibald, *Coord. Chem. Rev.*, 254, 1686 (2010); https://doi.org/10.1016/j.ccr.2010.02.025
- B. Korybut-Daszkiewicz, R. Bilewicz and K. Wozniak, *Coord. Chem. Rev.*, 254, 1637 (2010);
- <u>https://doi.org/10.1016/j.ccr.2009.12.004</u>
  L.F. Lindoy, G.V. Meehan, I.M. Vasilescu, H.J. Kim, J.-E. Lee and S.S. Lee, *Coord. Chem. Rev.*, 254, 1713 (2010);
- https://doi.org/10.1016/j.ccr.2009.11.012
- L. Tusek-Bozic, E. Marotta and P. Traldi, *Polyhedron*, 26, 1663 (2007); https://doi.org/10.1016/j.poly.2006.12.012
- 7. R. Chakrabarty, P.S. Mukherjee and P.J. Stang, *Chem Rev.*, **111**, 6810 (2011);
- https://doi.org/10.1021/cr200077m
- A. Kilic, E. Tas, B. Deveci and I. Yilmaz, *Polyhedron*, 26, 4009 (2007); <u>https://doi.org/10.1016/j.poly.2007.05.013</u>
- D.E. Fenton and H. Okawa, *Chem. Ber.*, **130**, 433 (1997); https://doi.org/10.1002/cber.19971300402
- S. Di Bella and I. Fragala, Synth. Matals, 115, 191 (2000); https://doi.org/10.1016/S0379-6779(00)00354-4
- P.G. Lacroix, Eur. J. Inorg. Chem., 2001, 339 (2001); https://doi.org/10.1002/1099-0682(200102)2001:2<339::AID-EJIC339>3.0.CO:2-Z
- 12. N.E. Borisova, M.D. Reshetova and Y.A. Ustynyuk, *Chem. Rev.*, **107**, 46 (2007);
- https://doi.org/10.1021/cr0683616
- N.A. Rey, A. Neves, A. Bortoluzzi, C.T. Pich and H. Terenzi, *Inorg. Chem.*, 46, 348 (2007); https://doi.org/10.1021/ic0613107
- 14. J. Gao, F.R. Woolley and R.A. Zingaro, Org. Biomol. Chem., 3, 2126 (2005); https://doi.org/10.1039/b503971a
- C. Edder, C. Piguet, J.-C.G. Bünzli and G. Hopfgartner, *Chem. Eur. J.*, 7, 3014 (2001); https://doi.org/10.1002/1521-3765(20010716)7:14<3014::AID-</li>
- CHEM3014>3.0.CO;2-D
- W.K. Wong, H. Liang, W.Y. Wong, Z. Cai, K.F. Li and K.W. Cheah, *New J. Chem.*, 26, 275 (2002); <u>https://doi.org/10.1039/b104175b</u>
- A. Bianchi, E. Garcia-Espana and K. Bownman-James, Supramolecular Chemistry of Anions, Wiley-VCH: New York (1997).
- A. Bianchi, M. Micheloni and P. Paoletti, *Coord. Chem. Rev.*, **130**, 17 (1991); https://doi.org/10.1016/0010-8545(91)80023-7
- D.L. Grisenti, M.B. Smith, L. Fang, N. Bishop and P.S. Wagenknecht, *Inorg. Chim. Acta*, **363**, 157 (2010); <u>https://doi.org/10.1016/j.ica.2009.09.020</u>
- S.R. Cooper, Crown Compounds Towards Future Applications, Wiley-VCH: New York (1992).
- 21. R.D. Hancock and A.E. Martell, *Chem. Rev.*, **89**, 1875 (1989); https://doi.org/10.1021/cr00098a011
- S. Rani, S. Kumar and S. Chandra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 1507 (2011);
- https://doi.org/10.1016/j.saa.2011.01.041 23. M. Shokeen and C. Anderson, *Acc. Chem. Res.*, **42**, 832 (2009);
- <u>https://doi.org/10.1021/ar800255q</u>
   R. Delgado, V. Felix, L.M.P. Lima and D.W. Price, *J. Chem. Soc., Dalton Trans.*, 2734 (2007);
- https://doi.org/10.1039/B704360K
- H. Keypour, M. Rezaeivala, L. Valencia, P. Perez-Lourido and A.H. Mahmoud Khani, *Polyhedron*, 28, 3415 (2009); <u>https://doi.org/10.1016/j.poly.2009.07.012</u>
- H. Keypour, H. Goudarziafshar, A.K. Brisdon and R.G. Pritchard, *Inorg. Chim. Acta*, **360**, 2298 (2007); https://doi.org/10.1016/j.ica.2006.11.023
- 27. C. Núñez, R. Bastida, A. Macías, A. Aldrey and L. Valencia, *Polyhedron*, **29**, 126 (2010);
- <u>https://doi.org/10.1016/j.poly.2009.06.093</u>
   28. F. Firdaus, K. Fatma, M. Azam, S.N. Khan, A.U. Khan and M. Shakir, *Spectrochim. Acta A*, **72**, 591 (2009); <u>https://doi.org/10.1016/j.saa.2008.10.054</u>

- M.C. Fernández-Fernández, R. Bastida, A. Macías, P.P. Lourido and L. Valencia, *Polyhedron*, 28, 2371 (2009); <u>https://doi.org/10.1016/j.poly.2009.04.042</u>
- M. Shakir, P. Chingsubam, H.T.N. Chishti, Y. Azim and N. Begum, Indian Chem., 43A, 556 (2004).
- M. Shakir, N. Begum, S. Parveen, P. Chingsubam and S. Tabassum, Synth. React. Inorg. Met.-Org. Chem., 34, 1135 (2004); <a href="https://doi.org/10.1081/SIM-120039262">https://doi.org/10.1081/SIM-120039262</a>
- 32. S.E. Livingstone, *Quart. Rev.*, **19**, 386 (1965); https://doi.org/10.1039/qr9651900386
- R.L. Carlin and E. Weissberger, *Inorg. Chem.*, 3, 611 (1964); <u>https://doi.org/10.1021/ic50014a044</u>
- F.A. Cotton and D.L. Weaver, J. Am. Chem. Soc., 87, 4189 (1965); https://doi.org/10.1021/ja01096a034
- Z.J. Zhong, N. Matsumoto, H. Okawa and S. Kida, *Inorg. Chem.*, 30, 436 (1991);
- <u>https://doi.org/10.1021/ic00003a015</u>
   H. Tamaki, Z.J. Zhong, N. Matsumoto, S. Kida, M. Koikawa, N. Achiwa, Y. Hashimoto and H. Okawa, J. Am. Chem. Soc., **114**, 6974 (1992); <u>https://doi.org/10.1021/ja00044a004</u>
- H. Tsubuke, T. Yoden, T. Iwachido and M. Zenki, J. Chem. Soc. Chem. Commun., 1069 (1991); https://doi.org/10.1039/C39910001069
- S. Wherland and H.B. Gray, Biological Aspects of Inorganic Chemistry, Wiley Eastern: New York, p. 289 (1977).
- D. Cummins and H.B. Gray, J. Am. Chem. Soc., 99, 5158 (1977); https://doi.org/10.1021/ja00457a042
- N.C. Patra, A.K. Rout, A.K. Bhattacharya, U. Pujapanda and P.K. Sahoo, Indian J. Chem., 30A, 225 (1991).
- 41. M.B.H. Howlader, M.S. Islam and M.R. Karim, *Indian J. Chem.*, **39A**, 407 (2000).
- 42. R.V. Chaudhary and A. Singh, Indian J. Chem., 41A, 3536 (2002).
- Z. Shourong, L. Huakuan, X. Jingchun and C. Yun-ti, *Polyhedron*, 13, 759 (1994);
- <u>https://doi.org/10.1016/S0277-5387(00)81681-2</u>
  24. D. Christodoulou, M.G. Kanatzidis and D. Coucouvanis, *Inorg. Chem.*, 29, 191 (1990);
- <u>https://doi.org/10.1021/ic00327a010</u> 45. Z.A. Siddiqi and V.J. Mathew, *Polyhedron*, **13**, 799 (1994);
- https://doi.org/10.1016/S0277-5387(00)81687-3
- W.E. Keyes, J.B.R. Dunn and T.M. Loehr, J. Am. Chem. Soc., 99, 4527 (1977); https://doi.org/10.1021/ja00455a065
- 47. T.M. Barclay, A. McAuley and S. Subramanian, *Chem. Commun.*, 170 (2002);
- https://doi.org/10.1039/b109793h 48. J.C. Previdi and R.A. Krause, *Inorg. Chem.*, **15**, 462 (1976); https://doi.org/10.1021/ic50156a044
- R.W. Hay, G.A. Lawrance and U.R. Shone, J. Chem. Soc., Dalton Trans., 1976, 942 (1976);
- https://doi.org/10.1039/DT9760000942
- 50. A. Dei and F. Mani, *Inorg. Chim. Acta*, **19**, L39 (1976); https://doi.org/10.1016/S0020-1693(00)91126-5
- 51. R.W. Hay and D.P. Piplani, J. Chem. Soc., Dalton Trans., **1977**, 1956 (1977); https://doi.org/10.1039/dt9770001956
- 52. G. Irwin, A.D. Kirk, I. Mackay and J. Nera, *Inorg. Chem.*, **41**, 874 (2002); https://doi.org/10.1021/ic010236j
- S. Chandra, L. Gupta and K. Gupta, J. Indian Chem. Soc., 81, 833 (2004).
   J.C. Byun, C.H. Han and Y.C. Park, Bull. Korean Chem. Soc., 26, 1044 (2005);
- https://doi.org/10.5012/bkcs.2005.26.7.1044 55. T.J. Collins, C. Slebodnick and E.S. Uffelman, *Inorg. Chem.*, **29**, 3433
- (1990); https://doi.org/10.1021/ic00343a030
- P.K. Baker, M.C. Durrant, S.D. Harris, D.L. Hughes and R.L. Richards, J. Chem. Soc., Dalton Trans., 509 (1997); https://doi.org/10.1039/a606193a
- 57. P. Comba, A. Fath, A. Kühner and B. Nuber, *J. Chem. Soc.*, *Dalton Trans.*, 1889 (1997);
- https://doi.org/10.1039/a607859a
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
- S.A.A. Nami and K.S. Siddiqi, Synth. React. Inorg. Met.-Org. Chem., 34, 1581 (2004);
- https://doi.org/10.1081/SIM-200026593 60. W. Levason, G. Reid and W. Zhang, Z. Anorg. Allg. Chem., **640**, 35 (2013);
- W. Levason, G. Reid and W. Zhang, Z. Anorg. Aug. Chem., 040, 55 (2015), https://doi.org/10.1002/zaac.201300482
   S. Guingtong, Anal. Supreman, Bur. 22, 401 (1086).
- 61. S. Srivastava, Appl. Spectrosc. Rev., 22, 401 (1986); https://doi.org/10.1080/05704928608060441