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INTRODUCTION

Over the past few years, continuous emergence of resis-
tance in microorganisms along with side effects towards
existing antimicrobials has become major health concern for
the community. Various types of infections are increasing day
by day due to these multidrug resistant bacteria and fungi.
Owing to this, design and development of new structural leads
has become major challenge for medicinal researchers. This
justifies the attempt for synthesis of new, effective and safer
antibacterial and antifungal agents with novel mode of action
to combat newer microbial infections [1,2].

Triazoles correspond to class of bioactive heterocycles
and have been recognized as key structural entity in several
molecules of pharmaceutical importance [3]. These scaffolds
reflected their role as antibacterial [4,5], antifungal [6], anti-
HIV [7], anticancer [8,9], antitubercular [10,11], anticon-
vulsant [12], antiallergic [13], antioxidant [14], antiviral [15],
antimalarial [16] agents etc., in the field of medicinal chemistry.
Inspite of the pharmaceutical applications, these triazole deri-
vatives also found to possess industrial importance as optical
brighteners, dyestuffs, photostabilizers, agrochemicals and
corrosion inhibitors [17,18]. In the past, various synthetic
approaches have been developed for the synthesis of 1,2,3-
triazoles, however, Cu(I) catalyzed cycloaddition between
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terminal alkynes and azides invented by Sharpless et al. [19]
and Meldal et al. [20] grown as a well established approach
over classical [3+2] Huisgen cycloaddition [21] for the
regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles.

Despite the advances in technology to understand the
mechanism of drug action, drug discovery is still complicated,
expensive and time consuming task. Now a days, quantitative
structure activity relationship (QSAR) has become an integral
part of drug design due to its effective, statistically validated
computational tool, mostly adopted for establishing correlation
between structure of molecules and their biological activities
[22]. It helps to envisage the biological spectrum of newly
designed compounds from structural and electronic parameters,
contributing for the drug discovery processes. Encouraged
from above considerations, for the development of effective
microbicidal substituted 1,2,3-triazoles [23-25], herein, we
describe the QSAR studies of 20 ester linked 1,4-disubstituted
1,2,3-triazoles (1a–1t) possessing antimicrobial activities
reported earlier [26].

EXPERIMENTAL

Dataset: All the synthesized triazoles (1a–1t) with anti-
microbial activities reported previously [26] were considered
for present QSAR study. The dataset was split into training



(20 compounds) and test (05 compounds) sets in a random
manner. The QSAR models were created using training set
compounds.

Structure preparation: The structures of the molecules
under study were drawn and optimized with Marvin Sketch
[27]. One base conformation was used for making all
structures.

Parameters calculation: In order to quantify the molecules,
various molecular descriptors (863 parameters containing one-,
two-, three-dimensional parameters) were calculated by
PaDEL Descriptor tool [28]. A molecule can be described
differently by different descriptors. However some parameters
can show similar meanings with similar values. Therefore,
parameters with zero or constant or near-constant values were
left out to reduce the recurrence and errors. Further, redundant
descriptors were deleted and the remaining parameters were
used in selection process of variables.

QSAR modeling and validation: The QSAR models were
developed using multiple linear regression procedure in
QSARINS. The resulted QSAR models were evaluated using
different parameters suggested in literature [29].

RESULTS AND DISCUSSION

QSAR studies: Synthesized 1,4-disubstituted 1,2,3-
triazole derivatives (1a–1t) with ester linkages were examined
in vitro for antimicrobial activity against Staphylococcus aureus
(MTCC 3160) and  Escherichia coli (MTCC 443), Klebsiellae
pneumoniae (NCDC 138), Enterobacter aerogenes (NCDC
106) and two fungi [Candida albicans (MTCC 227), Asper-
gillus niger (MTCC 282)] employing serial dilution technique
[26]. Norfloxacin and fluconazole were used as reference drugs

for antibacterial and antifungal strains, respectively. Results
expressed in terms of minimum inhibitory concentrations
(MIC, µmol/mL) were converted into pMIC (-log MIC) values
and are presented in Table-1.

QSAR modeling of synthesized triazole derivatives (1a-
1t) having ester linkages was worked out for explanation of
observed antimicrobial activity trend on structural basis. The
optimized 3D structures of the compounds were made with
Marvin Sketch 5.10 [27] and alligned. PaDEL Descriptor tool
[28] was used for calculating molecular descriptors (Total 1875
one-, two- and three-dimensional parameters). Selected des-
criptors are shown in Table-2. The whole dataset was divided
into training and test sets (20 % of whole dataset) and linear
models were developed by MLR (multiple linear regression)
technique using MLR Plus Validation tool [30]. Statistically
significant models were developed for activity against S.
aureus, E. coli and E. aerogenes. For activity against other
microbes, no significant model could be developed.

QSAR model for antibacterial activity against S.
aureus: The best QSAR model for activity against S. aureus
was a biparametric model described by the following equation:

pMICsa = -60.1132 (± 5.0744) WTPT-2 - 0.6782
           (± 0.1602) L3e + 123.7295 (± 10.3664)    (1)

The contribution of both descriptors WTPT-2 and L3e
towards activity is negative as shown by negative sign of their
coefficients. Standardized coefficients of these parameters are
-1.0544 and -0.3767 indicating more contribution of WTPT-2
than L3e to activity. For example, activity trend of compounds
1a, 1b, 1c; 1e, 1f, 1g and 1p, 1q, 1r is 1a < 1b < 1c; 1e < 1f <
1g and 1p < 1q < 1r while the reverse trend is followed by

TABLE-1 
pMIC VALUES OF TARGET COMPOUNDS (1a–1t) 

(1a-1t)

O

O

N
N

N

O

O

R2

R1

 

Compound R1 R2 pMICsa pMICec pMICkp pMICea pMICca pMICan 
1a H H 0.5458 0.5458 0.5458 0.5458 0.8468 0.8468 
1b H OCH3 0.8824 0.8824 1.1831 0.8824 0.8824 1.1831 
1c H NO2 1.2000 0.8989 1.2000 1.2000 0.8989 1.2000 
1d H Cl 0.8874 0.5864 0.8874 0.5864 0.8874 1.1884 
1e H CH3 0.5627 0.5627 0.5627 0.5627 0.8639 0.8639 
1f OCH3 H 0.8824 0.8824 1.1831 0.8824 1.1831 1.1831 
1g OCH3 OCH3 1.2161 1.5171 1.2161 0.9154 1.2161 1.2161 
1h OCH3 NO2 1.2321 1.2321 1.5331 1.2321 1.5331 1.8416 
1i OCH3 Cl 1.2211 1.2211 1.5214 0.9201 1.2211 1.5214 
1j OCH3 CH3 1.1993 1.1993 0.8979 0.8979 1.1993 1.5003 
1k NO2 H 1.5017 1.2000 1.2000 0.8989 1.2000 1.5017 
1l NO2 OCH3 1.2321 1.2321 1.2321 0.9307 1.2321 1.2321 

1m NO2 NO2 1.8477 1.5482 1.5482 1.5482 1.8477 0.9144 
1n NO2 Cl 1.5376 1.5376 1.2366 1.2366 1.2366 1.2366 
1o NO2 CH3 1.5157 1.2154 0.9144 0.9144 1.2154 0.9144 
1p CH3 H 0.8639 0.8639 0.8639 0.8639 0.8639 1.4660 
1q CH3 OCH3 1.1993 1.1993 1.1993 0.8979 1.1993 1.1993 
1r CH3 NO2 1.5157 1.2154 1.5157 1.2154 1.2154 1.5157 
1s CH3 Cl 1.2041 1.5045 1.2041 0.9027 1.2041 1.5045 
1t CH3 CH3 0.8801 0.8801 1.1811 0.8801 1.1811 1.1811 

 

2338  Kaushik et al. Asian J. Chem.



TABLE-2 
CALCULATED DESCRIPTORS OF  

TARGET COMPOUNDS (1a–1t) 

Compd. WTPT-2 L3e ATS6m RDF135v piPC9 
1a 2.035068 1.301889 4775.597 4.864069 5.857219 
1b 2.028254 1.421883 5232.341 4.497687 5.931582 
1c 2.021657 1.618824 5394.101 4.763690 6.033686 
1d 2.028504 1.390776 5396.069 4.185389 5.876334 
1e 2.028504 1.616271 5010.137 4.888152 5.876334 
1f 2.028242 1.216993 5441.96 4.962116 5.931582 
1g 2.022336 1.539906 5898.705 4.964133 6.000796 
1h 2.016356 1.720267 6060.465 4.476971 6.096387 
1i 2.022366 1.419320 6062.433 4.089443 5.949340 
1j 2.022366 1.682614 5676.501 4.890646 5.949340 
1k 2.021644 1.229298 5575.866 4.856389 5.966788 
1l 2.016355 1.980989 6032.611 3.953865 6.033686 

1m 2.010749 1.547128 6194.371 4.799765 6.126323 
1n 2.016184 1.309783 6196.339 4.529647 5.983936 
1o 2.016184 1.559795 5810.407 5.078799 5.983936 
1p 2.028501 1.258420 5163.992 5.443979 5.913503 
1q 2.022374 1.543196 5620.736 5.603666 5.983936 
1r 2.016193 1.529523 5782.497 5.258523 6.081077 
1s 2.022406 1.338402 5784.464 4.804259 5.931582 
1t 2.022406 1.581626 5398.532 5.219110 5.931582 

 

values of WTPT-2 parameter. WTPT-2 is a 2D descriptor
defined by Molecular ID/number of atoms [31] while L3e is a
3D WHIM descriptor described as 3rd component size direc-
tional WHIM index/weighted by Sanderson electronegativity
[32].

QSAR model for antibacterial activity against E. coli:
The following equation shows the QSAR model for activity
against E. coli:

pMICec = 0.0008 (± 0.0001) ATS6m + 0.2573
          (± 0.0928) RDF135v - 4.5902 (± 0.7822)   (2)

Sign of coefficients of both parameters, ATS6m and
RDF135v, is positive signifying positive contribution of both
variables in determination of the activity. The values of stan-
dardized coefficients of ATS6m and RDF135v are 1.001 and
0.31, respectively. This proves the higher involvement of ATS6m
towards activity. For example, compound 1m is most active
followed by 1h, 1r and 1c. The value of ATS6m also decreases
in the same order. ATS6m is a 2D autocorrelation descriptor
expressed as Broto-Moreau autocorrelation of lag 6 (log func-
tion) weighted by mass [33] while RDF135v is a RDF descrip-
tors termed as Radial Distribution Function - 135/weighted
by van der Waals volume [34].

QSAR model for antibacterial activity against E.
aerogenes: The activity against E. aerogenes was explained
by following monoparametric QSAR equation:

pMICea = 2.99873 (± 0.37567) piPC9 -
   16.96108 (± 2.2426) (3)

The positive sign of coefficient of piPC9 illustrates direct
correlation of this parameter with the activity. For example,
the order of activities as well as piPC9 values of compounds
1c, 1h, 1m and 1r is same i.e. 1m > 1h > 1r > 1c. piPC9 is a
path count descriptor stated as conventional bond order ID
number of order 9 (ln(1+x)) [35].

The values of different statistical parameters calculated
for these QSAR models are exhibited in Table-3. It can be
observed that the developed models have good fitting ability
with high values of coefficient of determination R2 and adjusted
R2. To test the chance correlation, y-randomization process
was applied and the results show that the developed models
are free from chance correlation. The internal predictive power
of the models was assessed by LOO technique and high values
of Q2 for all the models confirmed good internal prediction
ability of the described QSAR models. The true predictive
ability of a model can be judged only by external evaluation
and this task was achieved by predicting the activity of a test
set. Different approaches were used for accomplishing this
task as proposed by Gramatica and Sangion [36]. Values of all
the external validation parameters like R2

ext, RMSEP, Q2
f1, Q2

f2,
Q2

f3, are in good range showing good external predictive
capability of the models. Further, the external predictive ability
was also checked according to R2

m criteria (after scaling)
suggested by Roy et al. [37] and other criteria proposed by
Golbraikh and Tropsha [38,39]. The above discussed QSAR
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Fig. 1(a–c). Euclidean based applicability domain of QSAR models plot
(black dots: training compounds, red dots: test compounds)
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Fig. 2(a–f). Plot between residuals vs. predicted activity and observed vs. predicted activity and for the described QSAR models (black dots:
training compounds, red dots: test compounds)

TABLE-3 
STATISTICAL CHARACTERISTICS OF THE DEVELOPED QSAR MODELS 

Statistical parameter Eqn. 1 Eqn. 2 Eqn. 3 Statistical parameter Eqn. 1 Eqn. 2 Eqn. 3 
R2 0.9157 0.8613 0.8199 Q2

f3 0.9410 0.9030 0.9256 
Adj-R2 0.9027 0.8399 0.8070 RMSEP(test) 0.0843 0.1051 0.0703 
PRESS 0.1626 0.2529 0.1910 CCC 0.9164 0.8367 0.8297 
SEE 0.1118 0.1395 0.1168 Av. R2

m(LOO) 0.8297 0.7282 0.6748 
F 70.5667 40.3575 63.7182 ∆ R2

m(LOO) 0.0572 0.0951 0.1536 
cR2p 0.8664 0.8076 0.7958 Av. R2

m(test) 0.8298 0.7241 0.6014 
Q2

loo 0.8776 0.7998 0.7607 ∆ R2
m(test) 0.0841 0.0764 0.1496 

R2
ext 0.8947 0.9564 0.7169 | R2

0- R’2
0| 0.0448 0.0049 0.1367 

R2
0 0.8847 0.9506 0.7161 K 1.0309 0.9146 0.9927 

R’2
0 0.8398 0.9555 0.5795 (R2-R2

0)/R
2 0.0112 0.0061 0.0010 

Q2
f1 0.8659 0.6139 0.7321 K’ 0.9663 1.0922 1.0023 

Q2
f2 0.8581 0.5604 0.7131 (R2-R'20)/R

2 0.0614 0.0009 0.1917 

 
models pass all these recommended tests. The Euclidean based
applicability domain [40] was also calculated for all the com-
pounds and is shown in Fig. 1(a-c). It can be clearly seen that
all the training and test compounds fall in the applicability

domain. The plots between observed vs. predicted activity
and residuals vs. predicted activity are shown in Fig. 2(a-f).
Observed and predicted activities along with residuals are
shown in Table-4.
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TABLE-4 
OBSERVED AND PREDICTED ACTIVITIES OF THE COMPOUNDS (1a–1t) ALONG WITH RESIDUALS 

pMICsa pMICec pMICea 
Compound 

Observed Predicted Residual Observed Predicted Residual Observed Predicted Residual 
1a 0.5458 0.5121 0.0337 0.5458 0.4551 0.0906 0.5458 0.6032 -0.0574 
1b 0.8824 0.8403 0.0420 0.8824 0.7237 0.1587 0.8824 0.8262 0.0562 
1d 0.8874 0.8464 0.0410 0.5864 0.7734 -0.1870 0.5864 0.6605 -0.0741 
1e 0.5627 0.6934 -0.1307 0.5627 0.6476 -0.0849 0.5627 0.6605 -0.0978 
1g 1.2161 1.1160 0.1001 1.5171 1.3731 0.1440 0.9154 1.0337 -0.1183 
1h 1.2321 1.3532 -0.1211 1.2321 1.3762 -0.1441 1.2321 1.3204 -0.0883 
1i 1.2211 1.1960 0.0251 1.2211 1.2781 -0.0569 0.9201 0.8794 0.0407 
1j 1.1993 1.0175 0.1818 1.1993 1.1777 0.0216 0.8979 0.8794 0.0185 
1k 1.5017 1.3683 0.1334 1.2000 1.0889 0.1111 0.8989 0.9317 -0.0328 
1l 1.2321 1.1764 0.0557 1.2321 1.2195 0.0126 0.9307 1.1323 -0.2016 

1m 1.8477 1.8077 0.0400 1.5482 1.5657 -0.0174 1.5482 1.4101 0.1381 
1n 1.5376 1.6419 -0.1043 1.5376 1.4977 0.0399 1.2366 0.9832 0.2534 
1p 0.8639 0.9363 -0.0724 0.8639 0.9129 -0.0490 0.8639 0.7719 0.0920 
1r 1.5157 1.4923 0.0234 1.2154 1.3565 -0.1411 1.2154 1.2745 -0.0591 
1s 1.2041 1.2485 -0.0444 1.5045 1.2412 0.2633 0.9027 0.8262 0.0766 
1t 0.8801 1.0835 -0.2035 0.8801 1.0414 -0.1613 0.8801 0.8262 0.0539 

1c* 1.2000 1.1033 0.0966 0.8989 0.9206 -0.0217 1.2000 1.1323 0.0676 
1f* 0.8824 0.9800 -0.0976 0.8824 1.0097 -0.1273 0.8824 0.8262 0.0562 
1o* 1.5157 1.4724 0.0433 1.2154 1.3324 -0.1171 0.9144 0.9832 -0.0688 
1q* 1.1993 1.1115 0.0878 1.1993 1.3168 -0.1175 0.8979 0.9832 -0.0853 

*Test compounds 

 
Conclusion

QSAR study was performed on 20 triazole derivatives
with ester linkage for their antimicrobial activity. Different
statistically significant multi-parametric QSAR models free
from chance correlation, good fitting ability with high values
of coefficient were developed for S. aureus, E. coli and E.
aerogenes. Results of QSAR studies revealed that antimicrobial
activity against Gram positive bacteria i.e. S. aureus were
governed by WHIM descriptor weighted by Sanderson
electronegativity while, antimicrobial activity against Gram
negative bacteria i.e. E. coli and E. aerogenes were governed
by RDF descriptor weighted by van der Waals volume and
piPC9 descriptor, respectively.
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