

Intermolecular Interactions and Refractive Indices: Experimental Data and Prediction of Oxygenated Fuel Additives with Hydrocarbons

REKHA DEVI¹, SUMAN GAHLYAN¹, MANJU RANI² and SANJEEV MAKEN^{1,*}

¹Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, India ²Department of Chemical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, India

*Corresponding author: Fax: +91 130 2484119; E-mail: sanjeevmakin@gmail.com

<i>Received</i> : 10 May 2018;	Accepted: 27 June 2018;	Published online: 31 July 2018;	AJC-19020
--------------------------------	-------------------------	---------------------------------	-----------

Oxygen containing compounds specifically alkanol and ether are being used as oxygenate fuel additives. The refractive indices (n_D) of oxygenated fuel additive, aliphatic and aromatic hydrocarbon and their mixtures were measured at 298.15 K to 318.15 K. The mixtures selected were diisopropyl ether (DIPE) + benzene, toluene, *n*-alkane (C_6 - C_8) or benzene, toluene (1) + alkane (2) and all possible combinations of alkanes at 298.15 K to 318.15 K. Various mixing rules like Gladstone-Dale, Arago-Biot, Heller, Weiner, Newton and Erying–John were applied for the theoretical estimation of refractive index and compared with experimental refractive indices of binary mixtures. Polynomial equation was applied to the measured data to calculate standard deviation. The Δn were further interpreted in terms of intermolecular interactions between the oxygenated fuel additive, aliphatic and aromatic hydrocarbons.

Keywords: Oxygenate, Refractive index, Diisopropyl ether, Hydrocarbons, Intermolecular interactions.

INTRODUCTION

Increase in global warming and extinction of fossil fuels is a great issue now a day. So the researchers have much interest in the alternative bio-fuels [1-3], which include biodiesel, bioalcohol, vegetable oil, propane and other biomass sources. Bio-fuels are used as oxygenated compounds in motor fuel [4]. The oxygenates are the oxygen containing compounds such as ethers, alkanol and ester used as fuel additives. The oxygen present in these oxygenates help in complete combustion of fuel. These are also good antiknocking agent with high octane number [5,6]. Now days due to carcinogenic nature of benzene it needs to be replaced [7,8] and toluene is a good candidate as it has similar property as benzene but much less carcinogenic [9]. In this sense, it is an interesting research object to study the thermophysical of the oxygenate with hydrocarbons.

The dependency of volume, acoustic or optical properties of multi-component mixtures on concentration or temperature is a useful indicator for reality of significant effects resulting due to intermolecular interactions. Thus, these mixing properties have significance in design and simulation process. In previous work [10-28], the thermophysical properties like excess volume, excess enthalpy, deviation in viscosity and ultrasonic speed of the binary systems of oxygenate with hydrocarbons have been studied. In this paper, the refractive indices (n_D) of diisopropyl ether (DIPE) + benzene, toluene, *n*-alkane (C₆-C₈) or benzene, toluene (1) + alkane (2) and all possible combinations of alkanes at 298.15 to 318.15 K are reported. Redlich–Kister equation have been used to correlate experimental values of refractive indices of binary mixtures. These deviations in n_D have been used to understand the nature of interaction between unlike molecules. Various mixing rules were applied for the theoretical estimation of n_D and these estimated values have been compared quantitatively with experimental n_D of binary mixtures.

EXPERIMENTAL

Diisopropyl ether was purified by standard procedure [29] and other chemicals *e.g.*, *n*-octane, *n*-heptane, *n*-hexane, toluene and benzene (Merck, > 99 %) were doubly distilled and kept in amber coloured bottles over molecular sieves (4A). For the measurement of density of the purified samples, Anton Paar DSA-5000 was used with an uncertainty of $\pm 10^{-3}$ kg m⁻³.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License, which allows others to copy and redistribute the material in any medium or format, remix, transform, and build upon the material, as long as appropriate credit is given and the new creations are licensed under the identical terms.

RESULTS AND DISCUSSION

Deviation in refractive index (Δn) have been calculated as:

a balance of precision ± 0.1 mg (OHAUS, AR224CN). The densities (ρ) and n_D for pure compounds and their binary systems are given in Tables 1 and 2, respectively.

200) with temperature controlled within \pm 0.01 K having

accuracy up to $\pm 1 \times 10^{-4}$. The binary mixtures were made using

 n_D data were measured with a refractometer (Abbemat-

$\Delta n = n_{\rm D} - \sum_{i=1}^{2} x_i n_{\rm Di} \tag{1}$

TABLE-1 PURITIES, MEASURED DENSITIES (ρ) AND REFRACTIVE INDICES (n_{d}) OF PURE COMPOUNDS								
Compound	GC results	Tomp (K)	ρ (k	g m ⁻³)	n _D			
Compound	(wt. %)	Temp. (K)	This work	Literature	This work	Literature		
		298.15	718.522	718.207 [30]	1.3654	1.3655 [31]		
DIPE	99.7	308.15	707.966	707.664 [30]	1.3598	1.3605 [31]		
		318.15	697.220	696.931 [30]	1.3541			
		298.15	873.612	873.550 [32]	1.4972	1.4977 [32]		
Benzene	99.8	308.15	862.894	862.930 [32]	1.4899	1.4910 [33]		
		318.15	852.103		1.4821			
		298.15	862.058	862.220 [32]	1.4937	1.4944 [32]		
Toluene	99.8	308.15	852.715	852.880 [32]	1.4877	1.4887 [32]		
		318.15	843.303		1.4815			
		298.15	655.296	654.800 [34]	1.3733	1.3736 [34]		
n-Hexane	99.6	308.15	646.128	645.780 [35]	1.3679	1.3670 [36]		
		318.15	636.779	636.390 [35]	1.3624			
		298.15	679.575	679.750 [37]	1.3846	1.3850 [34]		
<i>n</i> -Heptane	99.7	308.15	671.018	671.190 [37]	1.3793	1.3803 [38]		
		318.15	662.341	662.500 [37]	1.3740			
		298.15	698.718	698.570 [37]	1.3953	1.3960 [34]		
<i>n</i> -Octane	99.8	308.15	690.596	690.440 [37]	1.3902	1.3908 [38]		
		318.15	682.380	682.230 [37]	1.3853			

TABLE-2 REFRACTIVE INDEX (n _d) AND DEVIATION IN REFRACTIVE INDEX (Δn) FOR BINARY SYSTEMS AT DIFFERENT TEMPERATURES										
	298.	15 K	308.	15 K	318.15 K					
X ₁	n _D	Δn	n _D	Δn	n _D	Δn				
	DIPE (1) + Benzene (2)									
0.0491	1.4881	-0.0026	1.4815	-0.0020	1.4743	-0.0015				
0.1058	1.4772	-0.0061	1.4709	-0.0052	1.4647	-0.0039				
0.1745	1.4653	-0.0089	1.4589	-0.0083	1.4523	-0.0075				
0.2149	1.4587	-0.0102	1.4525	-0.0094	1.4465	-0.0081				
0.3064	1.4442	-0.0126	1.4389	-0.0111	1.4333	-0.0096				
0.4302	1.4272	-0.0133	1.4218	-0.0121	1.4175	-0.0095				
0.5168	1.4154	-0.0137	1.4098	-0.0129	1.4052	-0.0108				
0.6222	1.4034	-0.0118	1.3976	-0.0114	1.3918	-0.0107				
0.7258	1.3919	-0.0097	1.3863	-0.0092	1.381	-0.0082				
0.8105	1.3832	-0.0072	1.3777	-0.0068	1.3743	-0.0041				
0.9334	1.3708	-0.0034	1.3657	-0.0028	1.3603	-0.0023				
		Ι	DIPE (1) + Toluene (2	2)						
0.0400	1.4877	-0.0009	1.4819	-0.0007	1.4762	-0.0002				
0.0875	1.4808	-0.0017	1.4754	-0.0011	1.4701	-0.0002				
0.1530	1.4705	-0.0036	1.4658	-0.0023	1.4605	-0.0015				
0.2243	1.4599	-0.0050	1.4556	-0.0034	1.4501	-0.0028				
0.3022	1.4485	-0.0064	1.4446	-0.0044	1.4377	-0.0053				
0.3797	1.4385	-0.0065	1.4327	-0.0064	1.4268	-0.0063				
0.4600	1.4279	-0.0068	1.4219	-0.0070	1.4159	-0.0070				
0.5473	1.4168	-0.0067	1.4113	-0.0064	1.4053	-0.0065				
0.6867	1.4001	-0.0055	1.3968	-0.0031	1.3905	-0.0035				
0.7940	1.3878	-0.0040	1.3834	-0.0028	1.3786	-0.0017				
0.9072	1.3755	-0.0018	1.3709	-0.0008	1.3649	-0.0010				

		Ι	DIPE $(1) + n$ -Hexane	(2)		
0.0399	1.3722	-0.0008	1.3669	-0.0007	1.3614	-0.0007
0.1031	1.3714	-0.0011	1.3663	-0.0008	1.3608	-0.0007
0.1832	1.3707	-0.0012	1.3656	-0.0008	1.3601	-0.0008
0.2459	1.3701	-0.0013	1.3648	-0.0011	1.3591	-0.0013
0.3603	1.3692	-0.0013	1.3637	-0.0013	1.358	-0.0014
0.4834	1.3681	-0.0014	1.3625	-0.0015	1.3568	-0.0016
0.5624	1.3676	-0.0013	1.3621	-0.0012	1.3564	-0.0013
0.6891	1.367	-0.0009	1.3615	-0.0008	1.3556	-0.0011
0.7958	1.3668	-0.0002	1.3609	-0.0006	1.3551	-0.0007
0.9091	1.366	-0.0001	1.3604	-0.0001	1.3547	-0.0002
0.9577	1.3657	0.0000	1.3601	0.0000	1.3544	-0.0001
		<u> </u>	DIPE $(1) + n$ -Heptane	(2)		
0.0398	1.3843	0.0005	1.3791	0.0006	1.3738	0.0006
0.1061	1.3832	0.0006	1.3779	0.0007	1.3/2/	0.0008
0.2002	1.3818	0.0010	1.3763	0.0011	1.3/14	0.0014
0.2830	1.3800	0.0014	1.3734	0.0010	1.3703	0.0019
0.5905	1.3760	0.0018	1.3730	0.0020	1.3063	0.0022
0.5075	1.3709	0.0020	1.3/1/	0.0023	1.3642	0.0024
0.0051	1.3749	0.0019	1.3095	0.0020	1.3042	0.0022
0.7137	1.3722	0.0013	1.36/1	0.0018	1.35017	0.0019
0.0200	1.3678	0.0010	1.3040	0.0013	1 357	0.0014
0.9711	1.3664	0.0004	1.3608	0.0004	1.3553	0.0006
0.2711	1.500-	I	DIPE (1) + n -Octane ((2)	1.5555	0.0000
0.0475	1.3944	0.0005	1.3891	0.0003	1.3844	0.0006
0.1172	1.3926	0.0008	1.3873	0.0007	1.3825	0.0009
0.2036	1.3903	0.0011	1.3852	0.0012	1.3802	0.0013
0.2917	1.3881	0.0015	1.3831	0.0018	1.3781	0.0019
0.3958	1.3852	0.0017	1.3801	0.0019	1.3751	0.0021
0.5047	1.3821	0.0019	1.3769	0.0020	1.3718	0.0022
0.6067	1.3789	0.0017	1.3737	0.0019	1.3685	0.0021
0.7233	1.3752	0.0015	1.3699	0.0017	1.3647	0.0020
0.8296	1.3718	0.0013	1.3662	0.0012	1.3612	0.0018
0.9241	1.3686	0.0009	1.3633	0.0012	1.3579	0.0014
0.9619	1.3672	0.0007	1.3618	0.0008	1.3561	0.0008
		Be	enzene $(1) + n$ -Hexano	e (2)		
0.0578	1.3769	-0.0037	1.3713	-0.0039	1.3657	-0.0038
0.1429	1.3841	-0.0071	1.378	-0.0076	1.3722	-0.0075
0.2477	1.3936	-0.0105	1.3874	-0.0109	1.3812	-0.0110
0.3224	1.401	-0.0124	1.3948	-0.0126	1.389	-0.0121
0.4592	1.4158	-0.0145	1.4103	-0.0138	1.4059	-0.0116
0.5648	1.4283	-0.0151	1.4216	-0.0153	1.4158	-0.0143
0.6742	1.4437	-0.0132	1.4373	-0.0130	1.4316	-0.0116
0.7527	1.4546	-0.0120	1.4479	-0.0119	1.4419	-0.0106
0.8199	1.4642	-0.0107	1.458	-0.0100	1.452	-0.0086
0.8860	1.4/52	-0.0079	1.4687	-0.0073	1.4629	-0.0056
0.9470	1.4929	0.0023	1.4864	0.0029	1.4796	0.0038
0.0756	1 2806	0.0046	nzene(1) + n-Heptan	0.0016	1 2822	0.0020
0.0750	1.3050	-0.0040	1.3077	-0.0010	1.3873	-0.0020
0.2800	1 4047	-0.0079	1 3078	-0.0071	1.3019	-0.0003
0.3631	1 4099	-0.0164	1 4026	-0.0130	1.3951	-0.0199
0.4848	1.4223	-0.0175	1.4156	-0.0182	1.4089	-0.0186
0.6328	1.4382	-0.0181	1.4317	-0.0183	1.4249	-0.0183
0.7026	1.4471	-0.0170	1.4415	-0.0160	1.4337	-0.0169
0.7737	1.4572	-0.0148	1.4478	-0.0175	1.4416	-0.0165
0.8402	1.4648	-0.0146	1.4579	-0.0146	1.4501	-0.0151
0.8936	1.4736	-0.0118	1.4672	-0.0111	1.4597	-0.0111
0.9494	1.4886	-0.0030	1.4808	-0.0036	1.472	-0.0047

Benzene $(1) + n$ -Octane (2)								
0.0647	1.3982	-0.004	1.3922	-0.0046	1.3868	-0.0050		
0.1477	1.4028	-0.007	1.3966	-0.0085	1.3914	-0.0084		
0.2713	1.4097	-0.013	1.4013	-0.0161	1.3954	-0.0163		
0.3634	1.4163	-0.016	1.4096	-0.0170	1.4035	-0.0171		
0.4416	1.4226	-0.018	1.4138	-0.0205	1.4078	-0.0204		
0 5695	1 4342	-0.019	1 4276	-0.0195	1 4179	-0.0226		
0.5095	1.458	-0.019	1.4270	-0.0192	1 429	-0.0220		
0.7369	1.4533	-0.017	1.4366	-0.0172	1 4392	-0.0175		
0.8240	1.4555	-0.017	1.4585	-0.0171	1.4508	-0.0173		
0.0240	1.4003	-0.015	1.4305	-0.0139	1.453	0.0082		
0.9109	1.4794	-0.009	1.4725	-0.0085	1.4055	-0.0082		
0.9507	1.4005	-0.004 Tol	$\frac{1.4012}{1.4012}$	-0.0044	1.4752	-0.0047		
0.0512	1 2779	0.0017	$\frac{\text{uene}(1) + n-\text{Hexalle}}{1.2721}$	0,0000	1 2674	0.0011		
0.0313	1.3770	-0.0017	1.3731	-0.0009	1.3074	-0.0011		
0.1208	1.3633	-0.0055	1.3600	-0.0023	1.3701	-0.0014		
0.2149	1.3942	-0.0050	1.3889	-0.0047	1.3844	-0.0030		
0.2875	1.4021	-0.0058	1.3969	-0.0054	1.3924	-0.0042		
0.4089	1.4161	-0.0064	1.4107	-0.0062	1.4057	-0.0054		
0.5180	1.4289	-0.0068	1.4235	-0.0065	1.4182	-0.0059		
0.6311	1.4432	-0.0061	1.4375	-0.0060	1.432	-0.0056		
0.7134	1.4539	-0.0053	1.4478	-0.0056	1.4429	-0.0045		
0.8078	1.4669	-0.0037	1.4615	-0.0032	1.4561	-0.0025		
0.9093	1.4806	-0.0022	1.4749	-0.0019	1.4691	-0.0016		
0.9520	1.4865	-0.0014	1.4805	-0.0015	1.4744	-0.0014		
		Tol	uene $(1) + n$ -Heptane	e (2)				
0.0557	1.3894	-0.0013	1.3841	-0.0012	1.3786	-0.0014		
0.1150	1.394	-0.0032	1.3887	-0.0031	1.3833	-0.0031		
0.2130	1.4021	-0.0057	1.3966	-0.0058	1.391	-0.0059		
0.3099	1.4107	-0.0077	1.4049	-0.0080	1.3992	-0.0081		
0.4294	1.4218	-0.0096	1.416	-0.0098	1.4105	-0.0097		
0.5055	1.4293	-0.0105	1.4238	-0.0103	1.4183	-0.0100		
0.6126	1.4419	-0.0095	1.4362	-0.0095	1.4306	-0.0093		
0.7040	1.4523	-0.0091	1.4467	-0.0089	1.4407	-0.0090		
0.8255	1.4676	-0.0071	1.4616	-0.0072	1.4556	-0.0071		
0.9190	1.4812	-0.0037	1.475	-0.0039	1.4687	-0.0041		
0.9556	1.4858	-0.0031	1.4797	-0.0032	1.4738	-0.0029		
		Tol	luene $(1) + n$ -Octane	(2)				
0.0587	1.3999	-0.0012	1.3951	-0.0008	1.3902	-0.0007		
0.1550	1.4046	-0.0060	1.3996	-0.0057	1.3946	-0.0056		
0.2536	1.4121	-0.0082	1.4069	-0.0080	1.4015	-0.0082		
0.3542	1.4196	-0.0106	1.4141	-0.0106	1.4084	-0.0110		
0.4731	1.4298	-0.0121	1.4243	-0.0120	1.4186	-0.0122		
0.5751	1.4394	-0.0125	1.4337	-0.0126	1.4279	-0.0127		
0.6441	1.4467	-0.0120	1.4411	-0.0119	1.4349	-0.0124		
0.7281	1.4561	-0.0108	1.4503	-0.0109	1.4439	-0.0114		
0.8221	1.4679	-0.0083	1.4618	-0.0086	1.4558	-0.0086		
0.8824	1.4753	-0.0068	1.4699	-0.0063	1.4639	-0.0063		
0.9593	1 4884	-0.0013	1 4819	-0.0018	1.4758	-0.0018		
0.7575	1.1001	n-1	Hexane $+ n$ -Heptane	(2)	1.1750	0.0010		
0.0413	1.3851	-0.0002	1.3804	-0.0002	1.3754	-0.0002		
0.1134	1 3842	-0.0002	1 3794	-0.0002	1 3744	-0.0002		
0 1963	1 3831	-0.0002	1 3783	-0.0002	1 3732	-0.0002		
0.2827	1 382	-0.0002	1 3771	-0.0002	1 372	-0.0003		
0.2027	1 3804	-0.0003	1.3754	_0.0003	1 3702	-0.0003		
0.4007	1.3780	-0.0003	1.3734	_0.0003	1.3702	-0.0004		
0.5270	1.3789	-0.0003	1.3730	-0.0005	1.3003	-0.0004		
0.0030	1.376	-0.0005	1.3729	-0.0002	1.3073	-0.0004		
0.7240	1.3703	-0.0002	1.3/13	-0.0002	1.3039	-0.0003		
0.8208	1.3733	-0.0002	1.37	-0.0002	1.3045	-0.0003		
0.8874	1.3745	-0.0002	1.3692	-0.0002	1.3039	-0.0001		
0.9490	1.3/38	-0.0001	1.3084	-0.0002	1.3031	0.0000		

		n	-Hexane + <i>n</i> -Octane ((2)		
0.0513	1.3944	0.0003	1.3896	0.0004	1.3847	0.0004
0.1233	1.3933	0.0008	1.3883	0.0007	1.3834	0.0007
0.2153	1.3914	0.0009	1.3865	0.0009	1.3818	0.0013
0.3073	1.3897	0.0012	1.3849	0.0014	1.3801	0.0017
0.4324	1.3877	0.0020	1.3835	0.0028	1.3783	0.0028
0.5524	1.3857	0.0026	1.3812	0.0032	1.3764	0.0037
0.6357	1.3834	0.0021	1.3789	0.0028	1.3743	0.0035
0.7478	1.3808	0.0020	1.3761	0.0025	1.3712	0.0030
0.8384	1.3781	0.0013	1.3728	0.0013	1.3679	0.0018
0.8975	1.3765	0.0010	1.3711	0.0009	1.3657	0.0009
0.9498	1.3746	0.0002	1.3693	0.0003	1.3639	0.0003
		n-	Heptane $+ n$ -Octane ((2)		
0.0509	1.3949	0.0001	1.3899	0.0003	1.385	0.0003
0.1208	1.3942	0.0002	1.3893	0.0004	1.3843	0.0004
0.2109	1.3936	0.0006	1.3885	0.0006	1.3835	0.0006
0.2993	1.3927	0.0006	1.3877	0.0008	1.3826	0.0007
0.4122	1.3915	0.0006	1.3865	0.0008	1.3814	0.0008
0.5249	1.3905	0.0008	1.3853	0.0008	1.3803	0.0009
0.6104	1.3895	0.0007	1.3843	0.0008	1.3792	0.0008
0.7427	1.388	0.0006	1.3828	0.0007	1.3776	0.0007
0.8315	1.3869	0.0005	1.3818	0.0007	1.3765	0.0006
0.9190	1.3859	0.0004	1.3807	0.0005	1.3753	0.0004
0.9639	1.3851	0.0001	1.3799	0.0002	1.3746	0.0002

where x_i and n_{Di} represent the mole fraction and the refractive index of the ith component, respectively and n_D is the refractive index of binary liquid mixture. Experimental n_D and Δn data of binary systems are given in Table-2. The Δn values were also fitted to polynomial equation (Figs. 1 and 2).

Fig. 1. Deviation in refractive index for the binary (1 + 2) mixtures as a function of mole fraction of x_1 at 298.15 K. Symbols represent experimental values and lines represent values calculated from Redlich-Kister equation

Fig. 2. Deviation in refractive index for the binary (1 + 2) mixtures as a function of mole fraction of x_1 at 298.15 K. Symbols represent experimental values and lines represent values calculated from Redlich-Kister equation

$$\Delta n = x_1 (1 - x_i) \left(\sum_{n=1}^{4} A^{(j)} (2x_1 - 1)^{(j-1)} \right)$$
(2)

where $A^{(j)}$ are the adjustable parameters and calculated by fitting Δn data in eqn. 2 respective standard deviations $\sigma(\Delta n)$ were recorded in Table-3.

For quantitative determination of $n_{\scriptscriptstyle D}$ following mixing relations were used:

Arago-Biot (A-B):

TABLE-3 ADJUSTABLE PARAMETERS OF REDLICH–KISTER EOUATION (A ^(j)) AND STANDARD DEVIATION (σ)						
Temperature (K)	Δ ⁽¹⁾	Δ ⁽²⁾	Δ ⁽³⁾	Δ ⁽⁴⁾	σ	
	11	DIPE (1) +	Benzene (2)	11	0	
298.15	-0.0536	0.0148	-0.0029	-0.0111	0.0000	
308.15	-0.0502	0.0089	0.0029	-0.0021	0.0004	
318 15	-0.0302	0.0085	0.0079	0.0111	0.0004	
510.15	0.0432	DIPE (1) +	Toluene (2)	0.0111	0.0010	
298.15	-0.0276	0.0063	0.0047	-0.0083	0.0002	
308.15	-0.0253	0.0087	0.0236	-0.0092	0.0002	
318 15	-0.0263	0.0129	0.0329	-0.0238	0.0004	
510.15	0.0205	DIPE(1) + i	<i>n</i> -Hexane (2)	0.0250	0.0001	
298.15	-0.0050	0.0013	-0.0010	0.0092	0.0001	
308.15	-0.0052	0.0008	0.0009	0.0053	0.0002	
318.15	-0.0059	0.0003	0.0012	0.0055	0.0002	
010110	0.0000	$\frac{1}{\text{DIPE}(1) + r}$	-Heptane (2)	010000	010002	
298.15	0.0076	-0.0005	-0.0001	0.0031	0.0002	
308.15	0.0084	0.0004	0.0016	0.0038	0.0002	
318.15	0.0091	-0.0009	0.0032	0.0061	0.0002	
		DIPE (1) + ;	<i>n</i> -Octane (2)			
298.15	0.0071	-0.0002	0.0038	0.0043	0.0001	
308.15	0.0079	-0.0021	0.0026	0.0105	0.0002	
318.15	0.0086	-0.0006	0.0057	0.0094	0.0002	
		Benzene (1) +	- <i>n</i> -Hexane (2)			
298.15	-0.0598	-0.0204	-0.0007	0.0428	0.0014	
308.15	-0.0595	-0.0209	-0.0004	0.0568	0.0022	
318.15	-0.0544	-0.0185	0.0004	0.0694	0.0023	
		Benzene (1) +	<i>n</i> -Heptane (2)			
298.15	-0.0708	-0.0195	-0.0193	-0.0184	0.0002	
308.15	-0.0764	-0.0048	0.0000	-0.0702	0.0014	
318.15	-0.0788	0.0019	0.0047	-0.0891	0.0012	
		Benzene (1) -	+ n -Octane (2)			
298.15	-0.0748	-0.0226	-0.0074	-0.0049	0.0000	
308.15	-0.0804	-0.0095	-0.0105	-0.0165	0.0008	
318.15	-0.0865	-0.0281	0.0000	0.0183	0.0011	
		Toluene (1) +	<i>n</i> -Hexane (2)			
298.15	-0.0266	0.0032	-0.0024	0.0001	0.0002	
308.15	-0.0263	0.0027	0.0040	-0.0044	0.0004	
318.15	-0.0233	0.0002	0.0100	-0.0033	0.0004	
		Toluene (1) +	<i>n</i> -Heptane (2)			
298.15	-0.0401	-0.0054	-0.0012	-0.0159	0.0004	
308.15	-0.0401	-0.0020	-0.0023	-0.0246	0.0003	
318.15	-0.0394	-0.0015	-0.0048	-0.0242	0.0002	
		Toluene (1) +	- <i>n</i> -Octane (2)			
298.15	-0.0494	-0.0104	0.0006	-0.0050	0.0006	
308.15	-0.0497	-0.0094	0.0032	-0.0108	0.0005	
318.15	-0.0511	-0.0109	0.0056	-0.0090	0.0006	
		<i>n</i> -Hexane (1) -	- <i>n</i> -Heptane (2)			
298.15	-1.12×10^{-3}	2.23×10^{-4}	-1.22×10^{-3}	-4.60×10^{-5}	4.90×10^{-5}	
308.15	-1.15×10^{-3}	3.60×10^{-4}	-1.09×10^{-3}	-5.47×10^{-4}	5.31×10^{-5}	
318.15	4.24×10^{-4}	1.24×10^{-3}	-3.31×10^{-3}	9.01×10^{-4}	3.27×10^{-4}	
		<i>n</i> -Hexane (1)	+ n-Octane (2)			
298.15	8.765×10^{-3}	6.783×10^{-3}	-2.216×10^{-3}	-8.802×10^{-3}	1.791×10^{-4}	
308.15	1.170×10^{-2}	8.881×10^{-3}	-8.077×10^{-3}	-1.120×10^{-2}	2.134×10^{-4}	
318.15	1.310×10^{-2}	1.210×10^{-2}	-6.856×10^{-3}	-1.620×10^{-2}	8.508×10^{-5}	
		<i>n</i> -Heptane (1)	+ n-Octane (2)			
298.15	2.95×10^{-3}	2.69×10^{-4}	8.21 × 10 ⁻⁴	1.43×10^{-3}	8.12×10^{-5}	
308.15	3.14×10^{-3}	-4.39×10^{-4}	2.74×10^{-3}	2.42×10^{-3}	4.50×10^{-5}	
318.15	3.31×10^{-3}	5.00×10^{-4}	1.43×10^{-3}	-4.00×10^{-5}	5.83×10^{-5}	

 $\mathbf{n}_{\mathrm{D}} = \mathbf{n}_{\mathrm{D}1} \mathbf{\phi}_1 + \mathbf{n}_{\mathrm{D}2} \mathbf{\phi}_2$

Gladstone-Dale (G-D):

$$n_{\rm D} - 1 = (n_{\rm D1} - 1)\phi_1 + (n_{\rm D2} - 1)\phi_2 \tag{4}$$

Lorentz-Lorenz (L-L):

$$\frac{\mathbf{n}_{\rm D}^2 - 1}{\mathbf{n}_{\rm D}^2 + 2} = \left(\frac{\mathbf{n}_{\rm D1}^2 - 1}{\mathbf{n}_{\rm D}^2 + 2}\right) \phi_1 + \left(\frac{\mathbf{n}_{\rm D2}^2 - 1}{\mathbf{n}_{\rm D}^2 + 2}\right) \phi_2 \tag{5}$$

Heller (H):

$$\frac{\mathbf{n}_{\rm D} - 1}{\mathbf{n}_{\rm D}} = \frac{3}{2} \left(\frac{(\mathbf{n}_{\rm D2}/\mathbf{n}_{\rm D1})^2 - 1}{(\mathbf{n}_{\rm D2}/\mathbf{n}_{\rm D1})^2 + 2} \right) \phi_2 \tag{6}$$

Weiner (W):

$$\frac{n_{\rm D}^2 - n_{\rm D1}^2}{n_{\rm D}^2 + 2n_{\rm D2}^2} = \left(\frac{n_{\rm D2}^2 - n_{\rm D1}^2}{n_{\rm D2}^2 + 2n_{\rm D2}^2}\right) \phi_2 \tag{7}$$

Newton (Nw):

(3)

$$n_{\rm D}^2 - 1 = (n_{\rm D1}^2 - 1)\phi_1 + (n_{\rm D2}^2 - 1)\phi_2$$
(8)

Eyring and John (E-J):

$$\mathbf{n}_{\rm D} = \mathbf{n}_{\rm D1} \phi_1^2 + 2(\mathbf{n}_{\rm D1} \mathbf{n}_{\rm D2})^{1/2} \phi_1 \phi_2 + \mathbf{n}_{\rm D2} \phi_2^2 \tag{9}$$

In all above equations, n_D , n_{D1} and n_{D2} are the refractive index of mixture and its pure component, respectively. ϕ_1 and ϕ_2 represent the volume fraction of pure components and given by

$$\phi_1 = \frac{x_1 V_1}{\sum x_i V_i} \text{ and } \phi_2 = \frac{x_2 V_2}{\sum x_i V_i}$$
 (10)

From these mixing rules standard deviation were also calculated which are reported in Table-4. From Table-4 it can be seen that for all the binary mixtures all mixing rules have good results.

TABLE-4 STANDARD DEVIATION OF CALCULATED VALUES OF REFRACTIVE INDEX USING VARIOUS CORRELATIONS								
Binary system	Temp. (K)	AB	GD	LL	Weiner	Heller	Newton	Eyring
	298.15	0.0260	0.0260	0.0247	0.0391	0.0243	0.0273	0.0254
DIPE (1) + Benzene (2)	308.15	0.0010	0.0010	0.0010	0.0011	0.0010	0.0010	0.0010
	318.15	0.0041	0.0041	0.0053	0.0100	0.0055	0.0028	0.0047
	298.15	0.0816	0.0816	0.0816	0.0807	0.0817	0.0815	0.0816
DIPE(1) + Toluene(2)	308.15	0.0035	0.0035	0.0048	0.0110	0.0051	0.0023	0.0042
	318.15	0.0039	0.0039	0.0052	0.0106	0.0055	0.0028	0.6551
	298.15	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020
DIPE $(1) + n$ -Hexane (2)	308.15	0.0017	0.0017	0.0017	0.0015	0.0017	0.0017	0.0017
	318.15	0.0011	0.0011	0.0011	0.0012	0.0011	0.0011	0.0011
	298.15	0.0013	0.0013	0.0013	0.0016	0.0013	0.0013	0.0013
DIPE $(1) + n$ -Heptane (2)	308.15	0.0009	0.0009	0.0010	0.0008	0.0010	0.0009	0.0010
	318.15	0.0019	0.0019	0.0020	0.0017	0.0020	0.0019	0.0019
	298.15	0.0018	0.0018	0.0018	0.0024	0.0018	0.0019	0.0018
DIPE $(1) + n$ -Octane (2)	308.15	0.0010	0.0010	0.0010	0.0011	0.0010	0.0010	0.0010
	318.15	0.0012	0.0012	0.0013	0.0009	0.0013	0.0011	0.0012
	298.15	0.0037	0.0037	0.0029	0.0138	0.0031	0.0047	0.0033
Benzene $(1) + n$ -Hexane (2)	308.15	0.0037	0.0037	0.0030	0.0136	0.0031	0.0046	0.0033
	318.15	0.0034	0.0034	0.0031	0.0127	0.0030	0.0040	0.0032
	298.15	0.0127	0.0127	0.0117	0.0192	0.0121	0.0137	0.0122
Benzene $(1) + n$ -Heptane (2)	308.15	0.0057	0.0057	0.0048	0.0127	0.0052	0.0066	0.0053
	318.15	0.0064	0.0064	0.0055	0.0130	0.0059	0.0072	0.0060
	298.15	0.0092	0.0092	0.0084	0.0153	0.0087	0.0100	0.0088
Benzene $(1) + n$ -Octane (2)	308.15	0.0052	0.0052	0.0045	0.0120	0.0046	0.0059	0.0048
	318.15	0.0066	0.0066	0.0059	0.0129	0.0060	0.0074	0.0063
	298.15	0.0061	0.0061	0.0072	0.0087	0.0070	0.0050	0.0067
Toluene $(1) + n$ -Hexane (2)	308.15	0.0005	0.0005	0.0012	0.0107	0.0012	0.0013	0.0007
	318.15	0.0010	0.0010	0.0020	0.0100	0.0020	0.0007	0.0015
	298.15	0.0017	0.0017	0.0026	0.0082	0.0024	0.0009	0.0021
Toluene $(1) + n$ -Heptane (2)	308.15	0.0014	0.0014	0.0007	0.0096	0.0013	0.0022	0.0010
	318.15	0.0013	0.0013	0.0007	0.0095	0.0012	0.0022	0.0010
	298.15	0.0009	0.0009	0.0007	0.0076	0.0010	0.0015	0.0007
Toluene $(1) + n$ -Octane (2)	308.15	0.0020	0.0020	0.0013	0.0083	0.0016	0.0027	0.0016
	318.15	0.0023	0.0023	0.0016	0.0084	0.0020	0.0030	0.0020
	298.15	0.0012	0.0012	0.0012	0.0013	0.0012	0.0012	0.0012
n-Hexane (1) + n -Heptane (2)	308.15	0.0010	0.0010	0.0010	0.0011	0.0010	0.0010	0.0010
	318.15	0.0011	0.0011	0.0011	0.0012	0.0011	0.0011	0.0011
	298.15	0.0012	0.0012	0.0012	0.0010	0.0012	0.0012	0.0012
n-Hexane (1) + n -Octane (2)	308.15	0.0014	0.0014	0.0014	0.0012	0.0014	0.0013	0.0014
	318.15	0.0017	0.0017	0.0017	0.0015	0.0017	0.0017	0.0017
	298.15	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010
n-Heptane (1) + n -Octane (2)	308.15	0.0005	0.0005	0.0006	0.0005	0.0006	0.0005	0.0006
	318.15	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005

Figs. 1 and 2 show deviation in refractive index data *versus* x_1 for these systems. The Δn values for the DIPE (1) + *n*-heptane, *n*-octane (2) or *n*-hexane and *n*-heptane (1) + *n*-octane (2) systems are positive while negative for DIPE (1) + benzene, toluene or *n*-hexane (2), benzene or toluene (1) + C_6-C_8 (2) and *n*-hexane (1) + *n*-heptane (2) systems. The Δn values for DIPE (1) + hydrocarbon (2) at equimolar mixtures follow the sequence: *n*-octane \approx *n*-heptane > *n*-hexane > *t*oluene > benzene while for benzene or toluene (1) + hydrocarbon (2) the order is *n*-hexane > *n*-heptane > *n*-octane and for *n*-hexane (1) + hydrocarbon (2) the value is positive for *n*-octane and negative for *n*-heptane system.

As the refractive index is speed of light dependent property. With increase in density due to $n-\pi$ intermolecular interactions between aromatic hydrocarbon and lone pair of oxygen atom in DIPE the n_D value also increase. The Δn in the DIPE + aromatic hydrocarbon mixtures for toluene are larger than benzene due to presence of one methyl group which increase the electron density on benzene ring for stronger $n-\pi$ interactions [39]. While in case of aliphatic *n*-heptane or *n*-octane there is absence of π -electrons only disorder in proper orientation of hydrocarbon occur, so for DIPE (1) + alkane (2) mixtures, medium gets rarer and refractive index decreases [40]. The deviation in refractive index is also influenced with temperature. The Δn for DIPE (1) + heptane or benzene (2) mixtures is plotted against composition in Fig. 3. As shown in Fig. 3 for DIPE (1) + heptane or benzene (2) systems, with

Fig. 3. Deviation in refractive index for the binary (1 + 2) mixtures as a function of mole fraction of x_1 at different temperature. Symbols represent experimental values and lines represent values calculated from Redlich-Kister equation

increase in temperature Δn is also increasing in both positive as well as negative deviation.

Conclusion

Deviations in refractive index (Δn) for DIPE and hydrocarbon systems were determined at 298.15 to 318.15 K. The Δn values for the DIPE (1) + *n*-heptane, *n*-octane (2) or *n*hexane and *n*-heptane (1) + *n*-octane (2) systems are positive while negative for DIPE (1) + benzene, toluene or *n*-hexane (2), benzene or toluene (1) + C₆-C₈ (2) and *n*-hexane (1) + *n*heptane (2) systems. Various mixing rules applied for the theoretical estimation of n_D have good results with experimental data for all binary systems.

ACKNOWLEDGEMENTS

One of the authors, Rekha Devi acknowledges CSIR, India for financial assistance as Senior Research Fellow.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- F.E.M. Alaoui, E.A. Montero, J.-P. Bazile, F. Aguilar and C. Boned, J. Chem. Thermodyn., 43, 1768 (2011); https://doi.org/10.1016/j.jct.2011.06.006.
- M. Hajbabaei, G. Karavalakis, K.C. Johnson, J. Guthrie, A. Mitchell and T.D. Durbin, *Fuel Process. Technol.*, **126**, 402 (2014); https://doi.org/10.1016/j.fuproc.2014.04.030.
- K.H. Kim, I.S. Choi, H.M. Kim, S.G. Wi and H.J. Bae, *Bioresour. Technol.*, 153, 47 (2014);
- https://doi.org/10.1016/j.biortech.2013.11.059.
- 4. V.R. Surisetty, A.K. Dalai and J. Kozinski, Appl. Catal. A, 404, 1 (2011).
- F. Ancillotti and V. Fattore, *Fuel Process. Technol.*, 57, 163 (1998); <u>https://doi.org/10.1016/S0378-3820(98)00081-2</u>.
- M. Karabektas, G. Ergen and M. Hosoz, *Fuel*, **115**, 855 (2014); https://doi.org/10.1016/j.fuel.2012.12.062.
- Regulation 715/2007 of the European Parliament Ad of the Council on Type Approval of Motor Vehicles with respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) (2007).
- Directive 2009/30/EC of the European Parliament Ad of the Council on the Specification of Petrol, Diesel and Gas-Oil and Introducing a Mechanism to Monitor and Reduce Greenhouse Gas Emissions (2009).
- C. Dees, M. Askari and D. Henley, *Environ. Health Perspect.*, 104 (Suppl. 6), 1289 (1996);
- https://doi.org/10.1289/ehp.961041289.
- S. Verma, S. Gahlyan, M. Rani and S. Maken, Arab. J. Sci. Eng., (2018); https://doi.org/10.1007/s13369-018-3276-1.
- 11. N.T.A. Othman and M.P. Ngaliman, *Indian J. Sci. Technol.*, 9, 1 (2016); https://doi.org/10.17485/ijst/2016/v9i21/95246.
- 12. K. Partibha, K. Kumar, S. Gahlyan, M. Rani and V. Bhankar, *J. Mol. Liq.*, **259**, 167 (2018);
- https://doi.org/10.1016/j.molliq.2018.03.025. 13. S. Gahlyan, S. Verma, M. Rani and S. Maken, *Asian J. Chem.*, **30**, 731

(2018); https://doi.org/10.14233/ajchem.2018.20685.

- S. Gahlyan, S. Verma, M. Rani and S. Maken, *Korean J. Chem. Eng.*, 35, 1167 (2018);
- https://doi.org/10.1007/s11814-018-0020-1.
- S. Gahlyan, S. Verma, M. Rani and S. Maken, J. Mol. Liq., 258, 142 (2018); https://doi.org/10.1016/j.molliq.2018.03.003.
- 16. M. Rani, S. Gahlyan, H. Om, N. Verma and S. Maken, *J. Mol. Liq.*, **194**, 100 (2014);
- https://doi.org/10.1016/j.molliq.2014.01.016.
- M. Rani and S. Maken, *Thermochim. Acta*, **559**, 98 (2013); <u>https://doi.org/10.1016/j.tca.2013.02.010</u>.

- S. Gahlyan, M. Rani, I. Lee, I. Moon and S. Maken, *Korean J. Chem. Eng.*, **32**, 168 (2015); <u>https://doi.org/10.1007/s11814-014-0200-6</u>.
- S. Gahlyan, M. Rani, S. Maken, H. Kwon, K. Tak and I. Moon, *J. Ind. Eng. Chem.*, 23, 299 (2015);
- https://doi.org/10.1016/j.jiec.2014.08.032. 20. M. Rani and S. Maken, *J. Ind. Eng. Chem.*, **18**, 1694 (2012); https://doi.org/10.1016/j.jiec.2012.03.011.
- 21. M. Rani, S. Agarwal, P. Lahot and S. Maken, J. Ind. Eng. Chem., 19, 1715 (2013);
- https://doi.org/10.1016/j.jiec.2013.02.011.
- S. Gahlyan, S. Verma, M. Rani and S. Maken, J. Mol. Liq., 244, 233 (2017); https://doi.org/10.1016/j.molliq.2017.09.015.
- S. Gahlyan, S. Verma, M. Rani and S. Maken, *Korean Chem. Eng. Res.*, 55, 668 (2017); https://doi.org/10.9713/kcer.2017.55.5.668.
- S. Gahlyan, S. Verma, M. Rani and S. Maken, *Korean Chem. Eng. Res.*, 55, 520 (2017); https://doi.org/10.9713/kcer.2017.55.4.520.
- M. Rani and S. Maken, J. Ind. Eng. Chem., 19, 1760 (2013); https://doi.org/10.1016/j.jiec.2013.01.014.
- T.K. Thanusha, R. Ramesh, A.S.N.A. Fazli, M.Y.M. Yunus and K. Ramesh, ARPN J. Eng. Appl. Sci., 11, 2639 (2016).
- 27. M. Rani, S. Gahlyan, A. Gaur and S. Maken, *Chin. J. Chem. Eng.*, 23, 689 (2015);
- https://doi.org/10.1016/j.cjche.2014.12.003.
- M. Rani and S. Maken, *Korean J. Chem. Eng.*, **30**, 1636 (2013); <u>https://doi.org/10.1007/s11814-013-0076-x</u>.
- J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents. Physical Properties and Methods of Purification, Wiley, New York, edn 4 (1986).

- R. Gonzalez-Olmos, M. Iglesias, B.M.R.P. Santos and S. Mattedi, *Phys. Chem. Liq.*, 46, 223 (2008); https://doi.org/10.1080/00319100701660411.
- 31. J. George and N.V. Sastry, *Int. J. Thermophys.*, **24**, 1697 (2003); https://doi.org/10.1023/B:IJOT.0000004100.28834.0a.
- 32. S. Gahlyan, M. Rani and S. Maken, *J. Mol. Liq.*, **199**, 42 (2014); https://doi.org/10.1016/j.molliq.2014.08.011.
- 33. S. Gahlyan, M. Rani and S. Maken, *J. Mol. Liq.*, **219**, 1107 (2016); https://doi.org/10.1016/j.molliq.2016.04.011.
- M.I. Aralaguppi, C.V. Jadar and T.M. Aminabhavi, J. Chem. Eng. Data, 44, 435 (1999);
- https://doi.org/10.1021/je9802266. 35. M. Díaz Peña and G. Tardajos, *J. Chem. Thermodyn.*, **10**, 19 (1978); https://doi.org/10.1016/0021-9614(78)90144-1.
- J.N. Nayak, M.I. Aralaguppi and T.M. Aminabhavi, *J. Chem. Eng. Data*, 48, 1152 (2003); <u>https://doi.org/10.1021/je030107c</u>.
- D.C. Landaverde-Cortes, A. Estrada-Baltazar, G.A. Iglesias-Silva and K.R. Hall, J. Chem. Eng. Data, 52, 1226 (2007); https://doi.org/10.1021/je600554h.
- T.M. Aminabhavi, V.B. Patil, M.I. Aralaguppi and H.T.S. Phayde, J. Chem. Eng. Data, 41, 521 (1996); https://doi.org/10.1021/je950279c.
- J.C.R. Reis, I.M.S. Lampreia, Â.F.S. Santos, M.L.C.J. Moita and G. Douhéret, *ChemPhysChem*, **11**, 3722 (2010); https://doi.org/10.1002/cphc.201000566.
- S.K. Garg, T.S. Banipal and J.C. Ahluwalia, J. Chem. Thermodyn., 25, 57 (1993); https://doi.org/10.1006/jcht.1993.1007.