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INTRODUCTION

Malaria continues to be one of the major causes of morb-
idity even today since its discovery. It is mainly caused by
Plasmodium falciparum and is prevalent in sub-tropical countries.
Due to vituperative nature it drastically affected the health of
the people and created a financial setback in developing countries.
To ease this problem United Nation Development Program
(UNDP) has mentioned this as a millennium development goal.
The inefficient control of this disease is due to lack of novel
anti plasmodial drugs [1], transpiring resistance [2] and slow
progress in the development of new approved vaccines [3].
Further resistance of Plasmodium species towards primaquine,
artemisinin and quinoline based drugs have contributed to its
wide spread. Hence, there is an urgent need to develop new drugs
which can help in combating malaria.

Mutations in the active sites of receptors are primarily
responsible for drug resistance. Lactate dehydrogenase (LDH)
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enzyme of P. falciparum is considered to be a prospective target
to fight drug resistance and increased specificity in human
malaria. Lactate dehydrogenase enzyme is essential for the
production of energy, it catalyzes the formation of lactate in the
ultimate stage of glycolysis pathway by converting pyruvate.
Plasmodium falciparum lactate dehydrogenase (pfLDH) has
been chosen for the present study due to its distint active site
and substrate specificity. The emergence of resistance towards
commonly employed drugs like chloroquine, quinine, and
mefloquine has limited 4-amino-quinoline scaffold in treat-
ment of malaria [4]. Hence, it has essential compulsory to inves-
tigate efficacious drugs which can efficiently tackle malaria.
Therefore, in present study we employed integrated molecular
docking, 3D-QSAR and molecular dynamics (MD) simulation
approaches on 4-aminoquinoline derivatives in order to explore
the probable binding modes and derive key structural features
to enhance their inhibitory activity.



EXPERIMENTAL

A total of 70 molecules [5-8] with known inhibition of pf
3d7 strain were taken for the present study. Linux operating
system was used for molecular modeling calculations. The
crystal structure of pf LDH bound with chloroquine inhibitor
(pdb id: 1CET) [9] was downloaded from RCSB protein data
bank. Docking studies were performed using GLIDE 5.6 using
Extra precision (XP) docking mode [10] active site of the receptor
was made flexible by scaling the van der Waals region to 0.9
[11], this approach softens active site region [12]. The low energy
conformers of the ligands were obtained by applying OPLS
2005 force field. Structures of the molecules are given in Table-
1, their IC50, pIC50 and dock score values are given in Table-2.
Most promising poses of ligands obtained from docking were
subjected to 3D QSAR analysis [13,14]. CoMFA and CoMSIA
studies were carried out as reported earlier [15-17] using
SYBYLX -2.1 [18] by applying Gasteiger-Huckel [19] charges.
CoMFA and CoMSIA models were developed using training
set of 50 molecules by applying PLS analysis. Predictive ability
of the models was determined using test set of 20 molecules.

Molecular dynamics simulation: Desmond 3.8 [20] was
used for molecular dynamics simulations, in order to investi-
gate and compare the binding modes of chloroquine, molecule
49 and newly designed molecule N1. Molecular dynamics
simulations were carried out as per the procedure [21] and the
root mean square deviations (RMSD) were examined during
course of simulation and interaction diagrams of the simulation
were also generated to check the stability of hydrogen bond
interactions.

RESULTS AND DISCUSSION

Plasmodium falciparum CQ-sensitive inhibitors were
docked into the active site (Val 26, Phe 52, Asp 53, Ile 54, Val
55, Tyr 85, Ala 98, Gly 99, Phe 100, Lys 118, Ile 119 and Glu122)
of pfLDH. Dock pose of most active molecule 49 is depicted
in Fig. 1.

3D QSAR analysis was performed using a set of 70 molecules
which were divided into training and test set of 50 and 20, respec-
tively. The statistical results of CoMFA and CoMSIA are summ-
arized in Table-3. The statistical analysis yielded q2

loo of 0.547
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Fig. 1. Dock pose of most active molecule 49 showing H-bond interaction
with Glu 122 of pfLDH

and 0.533, r2
ncv of 0.961 and 0.965, r2

pred of 0.600 and 0.620,
respectively for CoMFA and CoMSIA. The results indicate
good internal and external predictive ability of the models.
The scatter plots of both CoMFA and CoMSIA are shown in
Fig. 2.

Contour analysis: The CoMFA and CoMSIA contour maps
were graphically interpreted by field contribution maps using
'STDEV COEFF' field type which represented default 80 and
20 % level contribution for favored and disfavored regions.

Figs. 3a-b show contour maps of steric and electrostatic
fields of both CoMFA and CoMSIA, where green and yellow
contours represent favored and disfavored regions, respectively.
In most active molecule 49, large green contour is seen below
phenyl ring attached to triazene, suggesting substitution with
bulky group at this position will increase the activity. A yellow
contour near the phenyl ring attached to chloroqine suggests
bulky substituents in this area will significantly decrease the
biological activity. Red contour on triazene ring recommend
substitution with electronegative group at this position will
increase the activity. Blue contour present on phenyl ring attached
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 TABLE-2 
MOLECULES ALONG WITH THEIR IC50, pIC50, DOCK SCORE AND PREDICTED ACTIVITIES 

S. No. IC50 pIC50 
Dock 
score 

Pred 
CoMFA 

Pred 
CoMSIA 

S. No. IC50 pIC50 
Dock 
score 

Pred 
CoMFA 

Pred 
CoMSIA 

1 120.4 6.919 -5.583 6.926 6.907 *36 15.08 7.822 -4.699 8.129 7.94 
2 81.4 7.089 -6.096 7.067 7.094 37 7.95 8.1 -5.572 8.1 8.11 
3 57.88 7.237 -5.877 7.181 7.316 38 4.21 8.376 -4.403 8.502 8.573 
4 70.58 7.151 -5.019 7.256 7.185 39 9.46 8.024 -6.097 8.054 8.099 
5 54.22 7.266 -4.854 7.291 7.261 40 4.27 8.37 -4.953 8.39 8.336 
6 10.66 7.972 -5.071 7.725 7.795 41 27.88 7.555 -4.862 7.603 7.579 
7 11.01 7.958 -5.176 7.836 7.853 42 20.15 7.696 -4.731 7.654 7.776 
8 29.52 7.53 -4.933 7.803 7.798 43 29.74 7.527 -4.550 7.476 7.509 

*9 11.78 7.929 -4.960 7.531 7.579 44 38.77 7.412 -4.958 7.404 7.407 
10 51.35 7.289 -4.867 7.356 7.373 45 23.13 7.636 -5.328 7.656 7.514 
*11 28 7.553 -4.902 7.484 7.502 46 234.63 6.63 -4.619 6.587 6.696 
*12 853.4 6.069 -3.920 6.782 6.976 47 5.92 8.228 -4.754 8.229 8.25 
*13 92.66 7.033 -1.901 7.48 7.325 48 18.53 7.732 -4.135 7.683 7.73 
*14 181 6.742 -5.171 7.043 6.987 49 3.01 8.521 -5.827 8.497 8.496 
15 200.1 6.699 -5.410 6.883 6.865 *50 64.84 7.188 -3.306 7.062 6.929 
*16 241.6 6.617 -5.469 7.202 7.197 *51 33.65 7.473 -4.525 7.7 7.588 
17 43.5 7.362 -4.620 7.365 7.39 52 41.5 7.382 -5.100 7.465 7.385 
18 54.5 7.264 -4.468 7.26 7.253 53 19.03 7.721 -5.487 7.725 7.704 
*19 93.5 7.029 -4.872 7.446 7.369 54 18.85 7.725 -4.916 7.672 7.692 
*20 35 7.456 -5.345 7.176 7.182 55 26.05 7.584 -3.062 7.548 7.538 
21 40 7.398 -3.710 7.386 7.379 56 13.42 7.872 -5.493 7.992 7.907 
22 31 7.509 -3.221 7.479 7.517 57 162.99 6.788 -1.681 6.739 6.798 
23 56 7.252 -5.219 7.201 7.164 58 29.65 7.528 -5.138 7.484 7.426 
*24 90.7 7.042 -4.908 7.436 7.362 59 37.63 7.424 -5.298 7.403 7.405 
25 23.5 7.629 -4.880 7.633 7.6 60 12.44 7.905 -2.719 7.802 7.89 
*26 96 7.018 -4.013 7.4 7.375 61 11.9 7.924 -4.544 7.836 7.876 
*27 93.9 7.027 -6.268 7.273 7.22 62 7.03 8.153 -5.215 8.259 8.169 
28 76.5 7.116 -5.337 7.178 7.203 *63 11.88 7.925 -4.266 7.58 7.659 
*29 49.3 7.307 -4.953 7.413 7.126 *64 6.41 8.193 -4.954 7.707 7.738 
30 38.2 7.418 -4.721 7.529 7.325 65 26.3 7.58 -3.451 7.622 7.597 
31 58.7 7.231 -4.943 7.139 7.052 66 291.73 6.535 -5.220 6.642 6.652 
32 42.7 7.37 -3.873 7.303 7.376 67 110.67 6.956 -5.559 6.985 6.911 
33 34.8 7.458 -4.497 7.46 7.449 *68 40.95 7.388 -4.779 7.512 7.68 
*34 22.1 7.656 -3.556 7.655 7.733 69 34.56 7.461 -5.849 7.418 7.445 
*35 6.97 8.157 -4.679 8.389 8.242 Chloroquine 8.15 8.089 -4.554 7.866 7.923 

*Represents test set molecules 
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TABLE-3 
STATISTICAL RESULTS FOR CoMFA AND CoMSIA MODELS 

Statistical parameters  CoMFA model CoMSIA model 
q2 0.547 0.533 
Molecules in training set 50 50 
Molecules in test set 20 20 
ONC 6 5 
r2

ncv 0.961 0.965 
SEE 0.095 0.089 
F 175.629 241.631 
r2

pred 0.600 0.620 
Fraction of field contributions:   

Steric 0.723 0.157 
Electrostatic 0.277 0.167 
Hydrophobic – 0.209 
Donor – 0.237 
Acceptor – 0.230 

q2
loo = cross-validated correlation coefficient by leave one out method, 

r2
ncv = non cross-validated correlation coefficient, ONC = optimum 

number of components, SEE = standard error of estimate, F = Fisher 
test value, r2

pred = cross-validated correlation coefficient on test set. 

 

to chloroquine signify that substitution with more electroneg-
ative groups at this position will decrease the activity.

Hydrophobic fields are depicted in Fig. 3c, where yellow
and white highlighted regions represent hydrophobic and hydro-
philic preferred regions, respectively. A large white contour
seen close to benzene ring in the most active molecule 49 indi-
cates that substituting bulkier hydrophilic groups will increase
the activity. Hydrogen bond donor and acceptor contours in
Fig. 3c show cyan and purple, magenta and red for favoured
and disfavoured, respectively. For molecule 49 a donor disfav-
oured purple contour is observed near to NH of quinoline and
an acceptor disfavored red contour is observed near to NH of
benzene region indicating the decrease in activity.

Designed molecules: The information obtained from the
3D QSAR analysis is illustrated pictorially in Fig. 4, here the
molecular area is divided into four regions. Region A is electro-
negative and hydrophilic favoured, when benzene was substi-
tuted with pyranone showed increase in predictive activity.

Fig. 3a. CoMFA steric (green is favored and yellow is disfavored), electrostatic (red is more negative charge and blue is more positive charge
favored regions) fields contour maps for best active molecule 49

Fig. 3b.CoMSIA Steric (Green is favored and yellow is disfavored), electrostatic (red is more negative charge and blue is more positive charge
favored regions) fields contour maps for best active molecule 49
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Fig. 3c. CoMSIA contour maps for best active molecule 49, Hydrophobic (white is hydrophilic and yellow is hydrophobic favored region),
hydrogen bond donor (cyan is favored and purple is disfavored region), hydrogen bond acceptor (magenta and red are favored and
disfavored regions respectively) fields

Region B with steric and hydrophilic favoured, substituents such
as -CONH2 has increased the affinity. At region C steric favoured
contour maps were observed, hence phenyl ring was substituted
with saturated hydrocarbon chains and cyclohexyl rings to

improve the activity. At region D, electrostatic favoured contour
was observed, hence triazine ring was substituted with simple
benzene. These entire contours were taken into consideration
to substitute with desirable substituents to obtain tailored Table-4

TABLE-4 
DESIGNED MOLECULES ALONG WITH DOCK SCORE AND PREDICTED ACTIVITIES 
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molecules having high predicted activity towards Plasmodium
falciparum 3D7 activity.

The designed molecules resembled best active compound
in terms of interactions and showed comparable dock score
with good predicted activity. Fig. 5 shows dock pose of newly
designed molecule N1 that showed two H-bond interactions
with Glu 122 and one hydrogen bond with Leu 115 in protein
active site of 1CET, hence increased the binding affinity. Predicted
pIC50 values were calculated and found to be better; structures
of newly designed molecules and their predicted pIC50 values
are given in Table-4.

Fig. 5. Dock pose of designed molecule N1 showing two H-bond
interactions with Glu 122 and one hydrogen bond with Leu 115 in
the protein active site of 1CET

Molecular dynamics simulations: Molecular dynamics
simulation was performed for 5ns on protein ligand complex
of chloroquine, molecule 49 and new molecule N1. Fig. 6 shows
the RMSD of protein back bone as function of simulation time
of each complex with respect to initial structure. The RMSD
for chloroquine ranged from 1.056 to 2.826 Å with a maximum
RMSD of 3.182 Å during the 5ns simulation time. RMSD for
molecule 49 from the series of ligands used in 3D-QSAR studies
showed RMSD of 0.984 to 2.169 Å with a maximum RMSD of
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Fig. 6. RMSD of protein back bone as function of simulation time of each
complex with respect to initial structure. N1 represents newly
designed molecule, CQ represents Chloroquine while 49 represents
best active molecule

3.182 Å during the simulation time indicating its stability which
correlates to its better activity than chloroquine. Structural
requirement based on 3D QSAR analysis was utilized for desig-
ning new molecules and to confirm the stability of these newly
designed molecules; molecular dynamics simulations were
performed for protein molecule N1 complex. The RMSD for
N1 ranged from 0.595 Å to 1.784 Å with a maximum RMSD
of 2.384 Å during the 5ns simulation time. The values clearly
indicate that N1-Protein complex has better stability. Analysis
of protein ligand interactions between pfLDH and ligands was
performed to understand mode of binding and changes
occurring in binding during simulations.

Glu 122 and Asp 53 are the vital residues for ligand binding.
Fig. 7(a-c) shows protein ligand contact interaction over trajectory.
The y-axis is normalized over the course of the trajectory. The
chloroquine showed major hydrogen bond interaction with
Asp 53 and hydrophobic interaction with Ile 54, Phe 100, and
Ile 119. In case of molecule 49, it showed hydrogen bond inter-
action with Asp 53, but during the course of simulation it
existed as water mediated bridged hydrogen bond. It retained
all the hydrophobic interaction shown by chloroquine and
showed more interaction with Val 26, Phe 52, Ala98, and Ile
123. The simulation interaction analysis of designed molecule
N1 showed similar interaction with active site residues, direct
hydrogen bond interaction was retained with Glu 122 for maxi-
mum duration of the simulation time and retained all other
hydrophobic interaction as chloroquine. This suggests that the
designed molecule N1 has ability to specifically bind to the
conserved Glu 122 residue of pfLDH were as in all mammalian
and other forms of LDH there is phenylalanine residue at this
position that is not capable of forming hydrogen bonding [22].

Conclusion

To pursue novel antimalarials with improved specificity
a model was developed using the in vitro antimalarial data
reported, in order to design molecules with improved activity.
QSAR model was statistically significant and the significance
was validated. The study has provided insights to improve biolo-
gical activity with the change in particular rings (anilino phenyl
and triazine) in 4-aminoquinoline derivatives. Molecular docking
and dynamic simulations studies highlight the exclusive binding
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Fig. 7. Protein – ligand contact interaction over trajectory with respect (a)
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signature of the ligands with the active site residue i.e. Glu122
of the target and it explains the specificity and subtle differences
in their predicted IC50 values.
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