Asian Journal of Chemistry; Vol. 24, No. 11 (2012), 5407-5408

Asian Journal of Chemistry

www.asianjournalofchemistry.co.in

NOTE

Crystal Structure of bis-[5-Chloro-2-hydroxybenzaldehyde]copper(II)

X.L. Zhang

Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Shaanxi, P.R. China

Corresponding author: Tel: +86 917 3566589; E-mail: pxh913@163.com

(Received: 7 October 2011; Accepted: 21 June 2012)	AJC-11652
--	-----------

A new Schiff base complex CuL₂ [HL = 5-chloro-2-hydroxybenzaldehyde] is synthesized and characterized using single crystal X-ray diffraction analysis. The crystal belongs to the monoclinic system, space group P2(1)/c, with a = 13.79(2), b = 3.818(6) (10), c = 12.51(2) Å, $\beta = 102.49(2)^{\circ}$, V = 643.5(19) Å³, Z = 2, Dc = 1.934 g/cm³, R(int) = 0.0622. The geometry around copper(II) is a distorted square planar coordination geometry. The units of the complex are linked *via* the weak intermolecular Cu...O contracts, leading to the formation of one-dimension (1D) chains along the c axis.

Key Words: Copper(II), Complexes, Single crystal, X-ray analysis.

Copper(II) complexes have a wide range of biological activity and some of these complexes have been known to be antitumour, antiviral and antiinflammatory^{1,2}.

Thus, it is quite important to have a good understanding of the structure of such metal complexes. In this paper, the complex, *bis*-[5-chloro-2-hydroxybenzaldehyde] copper(II), is obtained from the reaction of 5-chloro-2-hydroxybenzaldehyde and CuCl₂·2H₂O. Single crystal X-ray analyses of the complex is undertaken to elucidate the conformation and structure of the complex.

Preparation: To the solution of 5-chloro-2-hydroxybenzaldehyde (0.002 mol) in methanol (10 mL) and CuCl₂·H₂O (0.001 mol) in methnol (10 mL) was added. The mixture was stirring for 0.5 h and then filtered, the filtrate was left to stand undisturbed at room temperature. After a week brown block crystals suitable for X-ray analysis were obtained in 60 % yield.

Crystal structure determination: The crystallographic data, experimental details and parameters of the structure solution and refinement for the complex are summarized in Table-1. All X-ray diffraction measurements were performed at 153(2) K according to the standard procedure on a Bruker Smart 1000 CCD diffractometer equipped with a graphite-monochromated MoK_{α} radiation ($\lambda = 0.71073$ Å). The correction for absorption was applied Semi-empirically with the SADABS program. The structure was solved by direct methods and refined using the full matrix least squares method in the anisotropic approximation for the non-hydrogen atoms with the SHELXLT program package^{3,4}. All the non-hydrogen atoms

were refined anisotropically and hydrogen atoms were located at their idealized positions.

The coordinates and thermal parameters of the atoms in the structure of *bis*-[5-chloro-2-hydroxybenzaldehyde] copper(II) have been deposited with the Cambridge structural database (CCDC no. 839325). The selected bond lengths and angles in the crystal structure of the complex are presented in Table-2.

The compound has a crystallographic two-fold axis passing through Cu1. The Cu atom is coordinated by four oxygen atoms in a distorted square planar coordination geometry (Fig. 1), where the dihedral angle between the two coordination planes defined by O1Cu1O2 and O1ACu1O2A is 0.0° and the phenyl ring plane (C1/C2/C3/C4/C5/C6) and the chelate ring (O1/Cu1/ O2/C7/C6/C1) are nearly coplanar with a dihedral angle of 4.8(3)°. Bond angles also show that the coordination geometry about the copper atom in the title complex is a slightly distorted square planar structure, with O1Cu1O2, O1ACu1O2A and O1Cu1O1A angles of 93.19(16)°, 86.81(16)° and 180.00(15)°, respectively. [Symmetry code A: -x, -y + 0.5, -z + 1.5]. The Cu1O1 and Cu1O2 distances are 1.918(4) (4) Å and 1.932(5) Å, respectively. The distances are approach to the values found in other two coordinate copper complexes with similar ligands^{5,6}. The phenyl rings of the ligands are nearly coplanar with the chelating rings. This is probably a result of the coordinate of the O atoms with copper(II).

A view of the crystal cell of the complex is shown in Fig. 2. The 1D infinite chain structure is formed with the weak Cu...O intermolecular contacts linkages along the c axis.

TABLE-1
CRYSTAL DATA AND STRUCTURE
REFINEMENT PARAMETERS

Properties	Complex			
Empirical formula	$C_{14}H_8O_4Br_2Cl_2Cu$			
Formula weight	374.64			
Temperature (K)	153 (2)			
Radiation(MoK _{α}), λ (Å)	0.71073			
Crystal shape/colour	Prism/gray			
Crystal size (mm ³)	$0.41 \times 0.11 \times 0.07 \text{ mm}$			
Crystal system	Monoclinic			
Space group	P2(1)/c			
a (Å)	13.79(2)			
b (Å)	3.818(6)			
c (Å)	12.51(2)			
β (°)	90.00			
$V(Å^3)$	643.5(19)			
Z	2			
$D_c (g/cm^3)$	1.730			
μ (mm ⁻¹)	2.123			
F (000)	374			
θ range (°)	3.026/27.481			
Index range (h, k, l)	-16/17, -4/4, -16/13			
Measured reflections	3926			
Observed reflections $[I \ge 2\sigma(I)]$	1010			
Data/restraints/parameters	1432/0/97			
Goodness-of-fit on F ²	0.999			
$R_1, wR_2[I \ge 2\sigma(I)]$	0.0622/0.1500			
R_1 , w R_2 (all data)	0.0782/0.1572			
Large diff. peak and hole (e $Å^{-3}$)	0.178 and -1.151			
Note: $R_1 = \Sigma F_0 - F_c / F_0 $, $wR_2 = [\Sigma w (Fo^2 - Fc^2)^2 / \Sigma w (Fo^2)]^{1/2}$, where $w = 1$				

 $1/[\sigma^{2}(Fo^{2}) + (0.0685P)^{2} + 2.3600P, P = (Fo^{2} + 2Fc^{2})/3$

TABLE-2 SELECTED BOND LENGTHS (Å) AND BOND ANGLES (°)				
Bond	Å	Angle	0	
Cu(1)-O(1)	1.914(4)	O(1)-Cu(1)-O(1A)	180.0	
Cu(1)-O(1A)	1.914(4)	O(1A)-Cu(1)-O(2A)	93.19(17)	
Cu(1)-O(2)	1.932(5)	O(1)-Cu(1)-O(2A)	86.80(17)	
Cu(1)-O(2A)	1.932(5)			
Cl(1)-C(4)	1.744(6)			
Symmetry code: $A = r = y \pm 0.5 = 7 \pm 1.5$				

Symmetry code: A, -x, -y+0.5, -z+1.5

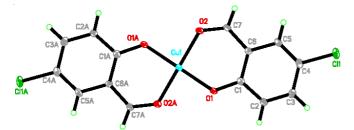
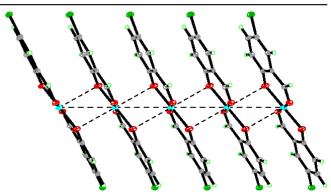
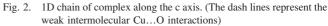




Fig. 1. A view of the complex, showing 30 % probability displacement ellipsoids (Symmetry code: A -x, y, 1/2-z)

Conclusion

In summary, we have designed and synthesized a 1D chain compound, which is constructed from 5-chloro-2-hydroxybenzaldehyde and Cu(II). In this compound, it possesses extensive weak Cu...O intermolecular contacts which connect the single molecules to form the 1D chain and stabilize the structure.

ACKNOWLEDGEMENTS

The authors are grateful to the support of the Phytochemistry Key Laboratory of Shaanxi Province for a research grant (No. 11JS008) of the People's Republic of China.

REFERENCES

- 1. M. Yamashita, Y. Nonaka, S. Kida, Y. Hamaue and R. Aoki, Inorg. Chim. Acta, 52, 43 (1981).
- 2. B.B. Mahapatra and D. Panda, Transition Met. Chem., 9, 280 (1984).
- 3. G.M. Sheldrick, Acta Cryst., A46, 467 (1990).
- G.M. Sheldrick, SHELXTL97, University of Göttingen, Germany, 4 (1997).
- E.N. Baker, D. Hall and T.N. Waters, J. Chem. Soc. A, 680 (1966). 5.
- 6. B. Qin, Acta Cryst., E65, m1098 (2009).