Asian Journal of Chemistry; Vol. 24, No. 11 (2012), 5269-5271

Asian Journal of Chemistry

www.asianjournalofchemistry.co.in

Synthesis and Surface Modification of a Rod Shaped Nanometer γ -Al₂O₃

CAO TIAN, REN LIN, CHEN YAN, WANG YING, XUAN HAN, WU MING and FENG SHAOJIE*

School of Materials and Chemical Engineering, Anhui University of Architecture, Hefei 230601, P.R. China

*Corresponding author: Fax: +86 0551 3828106; Tel: +86 0551 3828103; E-mail: fengshaojie@aiai.edu.cn

(Received: 17 October 2011;

Accepted: 15 June 2012)

AJC-11612

A simple co-precipitation method was adopted to synthesize nanometer γ -Al₂O₃ and then surface modification was implemented by coupling agent KH-550. The structure and morphology of the modified and unmodified γ -Al₂O₃ were characterized by XRD, IR and TEM. The results show that the particles were 30 nm rod shape and homodisperse. The lipophilic groups were endowed onto the surface of modified γ -Al₂O₃.

Key Words: Precipitation, γ-Al₂O₃, KH-550, PEG.

INTRODUCTION

Alumina is a low cost material most widely used as a catalyst and catalyst support¹. γ -Al₂O₃ have a cubic close packing of oxygen ions resulting in high surface area, mesoporosity and surface acidity. As a result of these important properties, γ -Al₂O₃ is extensively used as an adsorbent². Solid acid catalysts e.g. γ -Al₂O₃ are widely used as excellent catalysts for the dehydration of methanol to DME³. However nano- γ -Al₂O₃ has the potential physical and chemical properties different from the conventional materials, therefore the preparation of nano-y- Al_2O_3 powders become a hot research⁴. To date, there are different synthesis methods such as: micro-emulsion, sol-gel method, hydrolysis, precipitation and many other chemical synthesis techniques. Compared with other methods, the precipitation process is simple, low cost and the powders from it have excellent performance⁵. It is the most practical one promising approach. But, a serious agglomeration may form at every stage such as: precursor nucleation, nuclei growth, washing, drying and calcination. So, to obtain uniform, fine, narrow distribution powder, the whole process of the powder preparation must be strictly controlled. Try to mixing the reaction partners as much as possible at the molecular, ionic level to promote Al₂O₃ precursor precipitates of homogeneous nucleation, so that the nucleus growth and agglomeration of particles to be effectively controlled. The unique ultrasonic cavitation can increase nuclei formation rate several orders of magnitude. Increase of nuclei production rate can reduce the size of precipitation particles, inhibiting the aggregation and growth of nuclei, but also prevent the formation of hard agglomerates of nanoparticles, helping control the size, shape of nanoparticles. Inexpensive aluminum nitrate, ammonium bicarbonate were used as raw materials in this paper. The ultrasonic technology was introduced in chemical precipitation to prepare nano- γ -Al₂O₃.

EXPERIMENTAL

Synthesis: A.R. of Al (NO₃)₃,9H₂O and NH₄HCO₃ were dissolved respectively in 50 mL deionized water to a certain concentration. The molar ratio of NH₄HCO₃/Al (NO₃)₃,9H₂O was 7 and 7 % (mass) of PEG4000 was dissolved in Al(NO₃)₃ solution. The two aqueous solutions were ultrasonic agitated respectively in an ultrasonic cleaner for 2 min and then poured the NH₄HCO₃ solution into the Al(NO₃)₃ solution and ultrasonic stirring for 15 min. After filtration and washing with absolute ethanol twice, the precursor was dried for 24 h at 100 °C and calcined in flow of air at 900 °C for 2.5 h with a heating rate of 2 °C/min to obtain γ -Al₂O₃.

2 mL silane couple agent (KH550) were dissolved in 10 mL water/ethanol solution, then added 1.5g γ -Al₂O₃ after ultrasonic dispersion for 10 min. Heated while stirring to 70 °C and keeping thermostatically for 24 h. Filtered and washed with absolute alcohol several times, then vacuum drying at 60 °C for 8 h.

Powder X-ray diffraction patterns were recorded on a Rigaku D/MAX-3B diffractometer with Ni-filtered CuK_{α} radiation at a scanning rate of 5° min, a tension of 40 kV and a current of 30 mA, the angle 20 being covered between 10° and 80°. Transmission electron microscopy images was taken in a JEOL-2010 system. FTIR spectra were measured in the range of 400-4500 cm⁻¹ with a Perkin-Elmer 1710 FT-IR spectrometer using a KBr pellet containing the corresponding sample.

RESULTS AND DISCUSSION

Effect of reactants ratio to particles size

From the chemical equation:

 $Al(NO_3)_3 + 4NH_4HCO_3 == NH_4Al(OH)_2CO_3 \downarrow$ $+ 3NH_4NO_3 + 3CO_2 \uparrow + H_2O$

The molar ratio of NH₄HCO₃/Al(NO₃)₃ was 4. Because aluminum nitrate solution presents a strong acidic, while ammonium bicarbonate solution shows some alkaline, the hydrogen ions (H⁺) were neutralizing first in the reaction, until the pH value reached to form a stable NH₄Al(OH)₂CO₃ precursor. Therefore, when the molar ratio is small, that content of NH₄HCO₃ is small, few and little nuclei formed. Low concentrations and high solubility of precipitates leading to the supersaturation is low. According to Weimarn theory, the nucleation rate and growth rate are low, but the overall result is the growth rate of nuclei is greater than the nucleation rate and the particle size is relatively large. However, with the increase of molar ratio, NH₄HCO₃ content increasing in unit volume, part of H⁺ were neutralizing, there is more precipitation ions promote the reaction to the positive direction rapidly and a large number of nuclei formed instantly, then the concentration of precipitation improving, supersaturation of the solution also increased rapidly. In the present investigation, the molar ratio of NH₄HCO₃/Al(NO₃)₃ was 7.

Preparation and characterization of γ-Al₂O₃ from precursor: The γ-Al₂O₃ powder was obtained from the thermal decomposition of NH₄Al(OH)₂CO₃ precursor. The reaction as follows:

 $2NH_4Al(OH)_2CO_3 \rightarrow Al_2O_3 + 2NH_3 + 3H_2O + 2CO_2$

Fig. 1 show the XRD pattern of calcined NH₄Al(OH)₂CO₃ precursor at 900 °C for 2.5 h in air. The characteristics peaks of γ -Al₂O₃ phase at 2 θ = 45.78° for (111) reflection and 2 θ = 66.76° for (211) reflection, in addition, 2 θ = 37.6° for (110) reflection and 2 θ = 60.89° for (211) reflection are all seen in pattern.

The FT-IR spectrum shown in Fig. 2(A) clearly, indicate the presence of primary amine group of KH550 on the surface of γ -alumina. Compares A with B, there are significant differences at bands between 2700 cm⁻¹ and 3500 cm⁻¹, 500 cm⁻¹

and 1500 cm⁻¹. The characteristic absorption peaks (Fig. 2A) in the region 3500-3400 cm⁻¹ are assigned to the stretching mode of N-H of KH550 and a shoulder observed at 2900 cm⁻¹ is thought to be due to the stretching mode of C-H. The absorption bands corresponding to Si-O-C and Si-C at 1100-900 cm⁻¹ and 900-650 cm⁻¹ can be found in Fig. 2A. These confirm γ -alumina can be modified successfully by KH550.

Fig. 2. FT-IR spectra of modified (A), unmodified γ-Al₂O₃ (B) and coupling agent KH550 (C)

TEM studies have been undertaken to understand the effects of poly(ethylene glycol) on the morphology of γ -Al₂O₃ powder. Fig.3 gives the TEM image of γ -Al₂O₃, which is prepared without adding PEG4000. The particles agglomerate seriously. However, when add PEG4000 in the preparation, the particles uniformly dispersed after been calcined, as can be seen from Fig. 4 that shows the rod shaped particles with different lengths (30-60 nm) having a diameter of 15-20 nm. In the calcination process, the gases generated from the decomposition of macromolecular polymer PEG4000 and deposition precursor, increasing the distance between Al₂O₃ powder particles when the gases releasing, volatilizing. This, to a certain extent, plays the role of dispersed particles, avoiding reunion due to enhance of mass transfer capabilities in the high temperature.

Fig. 3. TEM image of γ -Al₂O₃ (without PEG4000)

Fig. 4. TEM image of γ -Al₂O₃ (with PEG4000)

Conclusion

Nano-sized γ -Al₂O₃ can be prepared by adopting chemical precipitation method, during which suitable ratios

of NH₄HCO₃/Al (NO₃)₃ is required. Addition of macromolecular polymer PEG4000 helped to obtain nanometer particles without seriously agglomeration. Ultrasonic cavitation can also help to control size of particles. Couple agent KH550 can react with the hydroxyl (HO⁻) of inorganic particle surface, thus enhance the lipophilicity of the inorganic particles.

ACKNOWLEDGEMENTS

The authors gratefully acknowledged the financial support by the Natural Science Foundation of Anhui Province, China. (No. 090414151).

REFERENCES

- 1. S.M. Kim, Y.J. Lee, J.W. Bae, H.S. Potdar and K.W. Jun, *J. Appl. Catal. A*, **348**, 113 (2008).
- 2. E. Elaloui, A.C. Pierre and G.M. Pajonk, J. Catal., 166, 340 (1997).
- F. Yaripour, F. Baghaei, I. Schmidt and J. Perregaard, *Catal. Commun.*, 6, 147 (2005).
- 4. D.L. Liu, J.G. Deng and Y.Z. Jin, *Ceramics*, **7**, 22 (2006).
- 5. N. Lock, M. Christensen and K.M.O. Jensen, *Angew. Chem.*, **50**, 7045 (2011).