

REVIEW

Coumarinolignoid-A Rare Natural Product: A Review†

ERUM AKBAR^{*} and ZUBI SADIQ

Department of Chemistry, Lahore College for Women University, Lahore, Pakistan

*Corresponding author: E-mail: erum.hussain@gmail.com; zubi_sadiq@hotmail.com

(Received: 15 October 2011;

Accepted: 21 May 2012)

AJC-11508

Coumarinolignoids are naturally occurring compounds that are popular as antihepatotoxic agent and will be interesting future molecules for antitumor and anticancer activities. In this review article, we summarize the isolation, extensive spectroscopic data, syntheses and biological significance of coumarinolignoids along with their regioisomers from the discovery till October 2010. These naturally occurring compounds are obtained from medicinal plants and exhibit strong biological activities.

Key Words: Coumarinolignoids, Isolation, Spectral data, Syntheses, Biological activities.

INTRODUCTION

Heterocycle plays an important role in the pharmaceutical field. Their importance can hardly be overemphasize and justifies a long lasting effort to work out new synthetic protocols for their production. Natural products impart medicinally significant heterocycles from the earlier inventions. New bioactive natural products always gain appreciable attention of researchers due to their minimum or no side effects. Coumarinolignoids (A) are one of these proven natural bioactive compounds particularly as hepatoprotective agents (Fig. 1). These are very few and rare group of naturally occurring organic compounds consisting of C_6 - C_3 - C_6 units¹. In the novel skeleton of coumarinolignoid, the coumarin moieties are linked with the phenyl propanoid units through a 1,4-dioxane bridge¹. This was earlier witnessed in the flavonolignoids (sylibin)² and xanthonolignoid (kielcorin)^{3,4}. Phenylpropanoid moiety usually has one or several C_6 - C_3 units that are widely distributed in nature.

†Dedicated to Prof. Dr. Bushra Mateen on her 68th Birthday.

This article presented a detailed coverage about isolation and syntheses of coumarinolignoids along with their potential biological activities. Furthermore, complete physical and spectral information is also provided.

Isolation: The isolation reported herein covers all the natural sources from which this class of compound was discovered. The structure of all naturally occurring coumarinolignoids were established on the basis of their spectral evidences (Tables 1 and 2).

In 1980, first coumarinolignoid cleomiscosin A (1) was isolated from *Cleome viscose* seeds by Chattopadhyay and co-workers⁵. Ray *et al.*⁶ reported the isolation of cleomiscosin B (**3**), a regioisomer of **1**, from the same plant. Moreover, compound **3** was also isolated from the roots of *Hannoa klaineana*⁷. Ichino *et al.*⁸ studied the liver protective property of cleomiscosin B.

Coumarinolignoid **1** was also isolated from its new sources *Simaba multiflora*⁹, *Soulamea soulameoides*⁹, *Matayba arborescens*⁹, *Aesculus turbinate*⁸, *Coptis japonica*¹⁰, *Hannoa klaineana*⁷, *Protium heptaphyllum*¹¹ and *Jatropha gossypifolia*¹². The spectroscopic evidences have brought on the revision of the structure of cleomiscosin A as **1** and **3** (Fig. 2, Tables 3 and 4).

Zoghbi *et al.*¹³ explored a new coumarinolignoid alongwith its regioisomer, propacin (**2**, **30**) from *Protium opacum* in 1981. Their structures were elucidated on the basis of chemical and physical evidences. These compounds were also reported from the roots of *Jatropha glandulifera* by Parthasarathy *et al.*¹⁴ in 1984 and *Jatropha gossypifolia* by Venkataiah *et al.*¹⁵ in 2001.

	PHYSICAL A
Compound	m.p. (°C), [α] _D
1	$247^{o20}, \pm 0^{o}$
$C_{20}H_{18}O_{8}$, 386	(c 0.1 CH ₃ OH)
1 diacetate	175°20
C ₂₄ H ₂₂ O ₁₀ , 470	
2	238-241° ³⁹ , -
$C_{20}H_{18}O_{7}$, 370	

4832 Akbar et al.

TABLE-1 ND SPECTRAL CHARACTERISTICS OF COUMARINOLIGNOIDS

Compound	m.p. (°C), [α] _D	IR v_{max} (cm ⁻¹)	UV-VIS $\lambda_{max}(nm)$	MS <i>m/e</i> (rel. int. %)
1 C ₂₀ H ₁₈ O ₈ 386	$247^{\circ 20}, \pm 0^{\circ}$ (c 0.1 CH ₃ OH)	3500, 1720, 1620, 1580	EtOH: 288, 327 (ε 5661, 10550)	386(52), 368(18), 354(14), 249(18) 208(48), 180(94), 162(20), 151(10), 27(100), 124(54)
1 diacetate	175°20	1765, 1730, 1718, 1610, 1575		37(100), 124(54) 470(76), 428(36), 68(100), 369(25), 222(87), 179(31), 149(15), 131(16)
2 C ₂₀ H ₁₈ O ₇ , 370	238-241°39, -	3400, 1710, 1615, 1565, 1450, 1290, 1145, 1050, 840	MeOH: 231, 257, 286, 323 (ε 33000, 4650, 7800, 13950)	370(40), 327(10), 233(30), 164(100)
2 acetate $C_{22}H_{20}O_{8,}412$	203-204° ³⁹	1770, 1730, 1640, 1610, 1470, 1320, 1225, 1160, 1065, 850	-	412(M ⁺), 370, 328, 233, 206, 164, 149
3 C ₂₀ H ₁₈ O ₈ , 386	$275-278^{\circ 34} \pm 0^{\circ}$ (c = 0.1, CH ₃ OH)	3510, 1720, 1610, 1560	EtOH: 285, 328	386(48), 368(2), 208(5), 180(100), 137(85), 124(48)
3 diacetate $C_{24}H_{22}O_{10}$, 470	174 ^{°20}	1762, 1730, 1718, 1612, 1570	-	-
4 $C_{20}H_{18}O_{8},386$ 4 diacetate	$235-238^{\circ 16} \pm 0^{\circ}$ (c = 0.92, C ₅ H ₅ N) 206-208^{\circ 37} -	3480, 3210, 1730, 1610, 1570, 1450, 1340, 1270, 1115, 1055, 835 1720, 1610, 1570	MeOH: 242, 260, 317, (ε 9170, 8892, 11230)	386(6), 368(5), 354(9), 311(5), 210(50), 178(100), 167(60), 150(58) 470, 428 (100), 368, 252
$C_{24}H_{22}O_{10},470$	200 200 ,	1/20, 1010, 1070	-	
5 C ₂₁ H ₂₀ O ₉ ,416	$255^{\circ 20} \pm 0^{\circ}$ (c = 0.1, CH ₃ OH)	3420, 1720, 1685	MeOH: 232, 280, 322, 258, 292, 328 (ε 25600, 4160, 12160)	416(7), 249(5), 210(56), 208(45), 193(21), 180(34), 167(100), 149 (50), 37(76), 109(50), 91(49), 79(78)
$\begin{array}{c} {\bf 6} \\ {\bf C}_{20}{\bf H}_{18}{\bf O}_{8,} 386 \end{array}$	220° ²¹ , -	3520, 1710	MeOH: 260, 295, 340	386(100), 355(4.02), 354(6.23), 353(6.28), 327(11.23), 210(53.31), 192(85.87), 191(55.20), 180(20.13), 178(16.51), 177(18.50), 167(68.05), 154(16.98), 149(18.38), 149(21.06)
6 acetate	210°21	-	-	-
7 $C_{21}H_{20}O_9, 416$	238-239 ⁰²² , -	3470, 1735, 1620, 1460, 1229, 1120, 1040, 820	MeOH: 240, 320	416, 398, 210, 208, 182, 167, 154
7 diacetate 8	190^{-22} 254-255 ⁰²³ +23 5	- 3440 3245 1720 1620 1575	- МеОН· 240, 265, 322	- 386(8) 368(6) 354(10) 311(15)
$C_{26}H_{28}O_{13}$, 548	(c = 0.1, DMSO)	1442, 1330, 1265	(£ 9150, 8790, 11310)	210(70), 178(100), 167(65), 150(75)
8 acetate $C_{36}H_{38}O_{18}$, 758	-	1725, 1625, 1570, 1450, 1355, 1210	-	-
9 $C_{20}H_{18}O_{9}$, 402	245-246 ⁶²⁵ , -	3541, 3446, 1705, 1620, 1577, 1525, 1446, 1421, 1306, 1198, 1130, 1086, 1063, 852, 752,1	-	402, 384, 344, 311, 249, 219, 208(100), 196, 168, 153, 109, 81, 63, 51
10 C ₂₂ H ₂₀ O _{9.} 428	-, ±0° (c = 0.02, CH ₃ OH)	3430, 2934, 1721, 1630, 1591	MeOH: 285, 326 (ε 3.62, 4.09)	386(69), 208(46.1), 180(69.57), 137(100)
11 C ₂₃ H ₂₂ O ₉ ,442	-, ± 0° (c = 0.01, CH ₃ OH)	3432, 2935, 1720, 1629, 1590	MeOH: 289, 329 (ε 3.78, 4.03)	386(70), 208(44.4), 194(65), 151(100)
12 C ₂₃ H ₂₂ O ₁₀ ,458	-, ± 0°, (c = 0.01, CH ₃ OH)	3433, 1721, 1628, 1585	MeOH: 233, 323 (ε 3.28, 4.10)	386(73), 208(44.8), 210(53.6), 167(100)
13 C ₂₀ H ₁₈ O ₈ , 386	-, 15.5° (c = 0.1, C ₅ H ₅ N)	3380, 2923, 2852, 1710, 1648, 1614, 1573, 1518, 1452, 1416, 1150	MeOH: 329, 219, 214 (ε 2.09, 2.53, 2.04)	137(86), 180(144), 208(10), 354(2), 368(6), 368(2)
14 C ₂₆ H ₂₈ O ₈ , 468	$-, 0^{\circ}$ (c = 0.48, CHCl ₃)	3440, 1710, 1615, 1580, 1520, 1500, 1460, 1400, 1350, 1310, 1220, 1140, 1110	MeOH: 328, 235, 220 (ε 4.67, 4.91, 5.01)	469(69), 468(100), 303(20), 302(99), 279(49), 265(28)
15 C ₂₉ H ₃₂ O ₇ , 492	-, 0° (c = 5.05, CHCl ₃)	3430, 1710, 1615, 1580, 1520, 1460, 1400, 1300, 1280, 1235, 1200, 1140, 1070	MeOH: 331, 289, 232, 223 (4.77, 4.50, 5.00, 5.00)	492(100), 425(13), 424(51), 423(89), 395(23), 394(77), 363(16), 356(46), 287(58), 277(11), 276(52), 261(26)
16 C ₂₉ H ₃₂ O ₇ , 492	-, 0° (c = 0.53, CHCl ₃)	3420, 1710, 1615, 1580, 1515, 1460, 1400, 1310, 1270, 1235, 1200, 1135, 1070	MeOH: 332, 288, 235, 219 (4.21, 3.98, 4.50, 4.60)	493(31), 492(100), 25(23), 424(52), 423(23), 422(21), 396(18), 395(66), 363(16), 327(16), 287(29), 276(21), 260(13)
17 C ₂₈ H ₃₀ O ₇ , 478	-, -	-	-	478(2), 407(54), 379(20), 355(18), 276(714), 261(39), 233(82), 221 (100), 189(63), 61(81), 128(81), 115(70)

115(70) 2944, 1605, 1520-1404, 1154-1137, 400, 263, 164, 137` -, - $C_{21}H_{20}O_{8}400$

Coumarinolignoid-A Rare Natural Product: A Review 4833

Compound	m.p. (°C), [α] _D	IR v_{max} (cm ⁻¹)	UV-VIS $\lambda_{max}(nm)$	MS <i>m/e</i> (rel. int. %)
19	$258-259^{\circ 30}, \pm 0^{\circ}$	3433, 2929, 1693, 1621, 1572,	MeOH: 322, 252, 237	
$C_{19}H_{16}O_{9}$, 388	$(c = 0.50, CH_3OH)$	1500, 1463, 1425, 1323, 1213, 1158, 847		-
20	$285-286^{\circ 30}, \pm 0^{\circ}$	3433, 2929, 1693, 1621, 1572,	MeOH: 323, 254, 232	
$C_{19}H_{16}O_{9}$, 388	$(c = 0.50, CH_3OH)$	1500, 1463, 1425, 1323, 1213, 1158, 847		-
21	$275-276^{\circ 30}, \pm 0^{\circ}$	3400, 2930, 1683, 1615, 1572,	MeOH: 327, 254, 228	
$C_{20}H_{18}O_{9,}402$	$(c = 0.50, CH_3OH)$	1500, 1447, 1419, 1342, 1228, 1134, 853		-
22	-, -0.7°	3349, 1705		
$C_{20}H_{18}O_{9,}402$	$(c = 0.1, CH_3OH)$		-	-
23	-, -	1590, 1720, 1715, 2930, 3430	286, 328	386, 208, 180, 137
C ₂₉ H ₂₄ O ₁₀ , 532			(solvent not mention)	
24	-, -	Same as 23	Same as 23	Same as 23
$C_{30}H_{26}O_{11}$, 562				
25	-, -	Same as 23	Same as 23	Same as 23
$C_{29}H_{24}O_{11}$, 548				
26 G H O 550 10	-, -	Same as 23	Same as 23	Same as 23
$C_{28}H_{24}O_{12},552.13$	100 101024 . 00			
27	$120-121^{024}, \pm 0^{0}$	3424, 1720, 1615, 1574	EtOH: 322 (£ 3.63)	-
$C_{21}H_{20}O_{9},428$	$(C=0.4087, CHCl_3)$	2420 1515 1600 1610 1500		
28	$258^{\circ,\circ}, \pm 0^{\circ}$	3420, 1715, 1690, 1610, 1580	-	416(100), 249, 210, 208, 182, 180,
$C_{21}H_{20}O_{9}$, 416	$(C = 0.1, CH_3OH)$			107, 134, 149

	TABLE-2 ¹ H and ¹³ C NMR OF COUMARINOLIGNOIDS
1 Cleome viscose ^{20, 35}	¹ H NMR δ (C ₅ D ₅ N): 3.74, 3.82 (2s, 2 × OMe), 3.94 (dd, <i>J</i> = 13, 3 Hz, Ha-9), 4.35 (dd, <i>J</i> = 13, 2 Hz, Hb-9), 4.5 (m, H-8), 5.01 (br s, OH), 5.62 (d, <i>J</i> = 8 Hz, H-7), 6.49 (d, <i>J</i> = 9.5 Hz, H-3), 6.78 (s, H-5), 7.22-7.56 (m, H-2, H-5 and H-6), 7.32 (br s, OH), 7.8 (d, <i>J</i> = 9.5 Hz, H-4); ¹³ C NMR δ (C ₅ D ₅ N): 160.8 (C-2), 113.6 (C-3), 144.5 (C-4), 101.1 (C-5), 146.3 (C-6), 138.4 (C-7), 133.0 (C-8), 139.3 (C-9), 111.9 (C-10), 127.5 (C-1), 112.3 (C-2), 150.0 (C-3), 149.0 (C-4), 116.6 (C-5), 121.7 (C-6), 77.5 (C-7), 79.9 (C-8), 60.7 (C-9), 55.8 (OMe), 56.2 (OMe)
Synthetic	¹ H NMR δ (CDCl ₃): 2.06 (s, OAc), 2.31 (s, OAc); ¹³ C NMR δ (CDCl ₃): 20.6q, 168.5s, 170.2s, 20.6q (2 × OAc)
2 Protium opacum ^{13, 39}	¹ H NMR δ (CDCl ₃): 6.33, 7.63 (d, $J = 9$ Hz, H-3, H-4), 6.55 (s, H-5), 6.93 (s, H-2, H-5, H-6), 4.7 (d, $J = 7.5$ Hz, H-7), 4.3 (m, H-8), 1.33 (d, $J = 6.5$ Hz, Me-8), 3.95, 3.9 (2s, 2 OMe); ¹³ C NMR δ (DMSO- d_6): 159.9 (C-2), 113.1 (C-3), 144.7 (C-4), 100.8 (C-5), 147.3 (C-6), 137.3 (C-7), 131.3 (C-8), 149.2 (C-9), 111.2 (C-10), 126.8 (C-1), 111.9 (C-2), 145.1 (C-3), 147.7 (C-4), 115.4 (C-5), 120.8 (C-6), 80.1 (C-7), 73.2 (C-8), 16.7 (C-9) 55.8 (2 × OMe)
Synthetic	¹ H NMR δ (CDCl ₃): 7.1-7.07 (m, H-5', H-6'), 2.33 (s, OAc)
3 Cleome viscose ^{6, 20}	¹ H NMR δ (C ₃ D ₅ N): 7.44 (d, <i>J</i> = 2.0 Hz, H-2), 6.42 (d, <i>J</i> = 9.5 Hz, H-3), 7.75 (d, <i>J</i> = 9.5 Hz, H-4), 6.76 (s, H-5), 7.31 (d, <i>J</i> = 8.1 Hz, H-5), 7.36 (dd, <i>J</i> = 2.0, 8.1 Hz, H-6), 4.54 (d, <i>J</i> = 8.0 Hz, H-7), 5.55 (d, <i>J</i> = 8.0 Hz, H-8), 3.94 (dd, <i>J</i> = 12.8, 3.5 Hz, H-9), 4.29 (dd, <i>J</i> = 12.8, 2.3 Hz, H-9), 3.72, 3.84 (s, 2 × OMe); ¹³ C NMR δ (C ₅ D ₅ N): 160.7 (C-2), 113.8 (C-3), 144.4 (C-4) 101.2 (C-5), 146.2 (C-6), 138.1 (C-7), 133.2 (C-8), 139.4 (C-9), 111.8 (C-10), 127.5 (C-1), 112.3 (C-2), 150.1 (C-3), 149.1 (C-4), 116.5 (C-5), 121.7 (C-6), 77.1 (C-7), 80.2 (C-8), 61.1 (C-9), 55.9, 56.1 (2 × OMe)
Synthetic	¹ H NMR δ (CDCl ₃): 3.84 (s, OAc), 3.92 (s, OAc); ¹³ C NMR δ (CDCl ₃): 170.2 s, 168.6 s, 20.2 q, 20.6 q
4 Daphne tangutica ^{16, 37}	¹ H NMR δ (DMSO- <i>d</i> ₆): 3.48 (m, H-9), 3.78 (s, 2 × OMe), 4.32 (m, H-8), 5.03 (d, $J = 8$ Hz, H-7), 6.31 (d, $J = 9.5$ Hz, H-3), 6.75 (s, H-2 and H-6), 6.94 (d, $J = 9$ Hz, H-6), 7.18 (d, $J = 9$ Hz, H-5), 7.96 (d, $J = 9.5$ Hz, H-4), 8.55 (br s, OH); ¹³ C NMR δ (C ₃ D ₅ N): 160.4 (C-2), 113.6 (C-3), 144.3 (C-4), 119.8 (C-5), 113.2 (C-6), 147.6 (C-7), 138.4 (C-8), 149.2 (C-9), 113.6 (C-10), 126.4 (C-1'), 106.3 (C-2'), 149.2 (C-3'), 132.2 (C-4'), 149.2 (C-5'), 106.3 (C-6'), 77.8 (C-7'), 79.9 (C-8'), 60.7 (C-9'), 56.4, 56.4 (2 × OMe)
Synthetic	¹ H NMR δ (CDCl ₃): 2.03 (s, aliph. Ac), 2.29 (s, ar Ac); ¹³ C NMR δ (CDCl ₃): 170.2s, 168.5s, 20.5q, 20.6q
5 Cleome viscose ²⁰	¹ H NMR δ (DMSO- <i>d</i> ₆): 6.36 (d, <i>J</i> = 9 Hz, H-3), 7.98 (d, <i>J</i> = 9 Hz, H-4), 6.93 (s, H-5), 6.76 (s, H-2), 6.76 (s, H-6), 4.98 (d, <i>J</i> = 8 Hz, H-7), 4.38 (m, H-8), 3.68 (dd, <i>J</i> = 12.5, 7 Hz, H-9), 3.41 (dd, <i>J</i> = 12.5, 3.5 Hz, H-9), 3.79 (s, OMe), 3.77 (s, OMe); ¹³ C NMR δ (C ₅ D ₅ N): 160.8 (C-2), 113.7 (C-3), 144.5 (C-4), 101.0 (C-5), 146.3 (C-6), 138.1 (C-7), 133.5 (C-8), 139.2 (C-9), 111.9 (C-10), 126.3 (C-1), 106.1 (C-2), 149.1 (C-3), 135.5 (C-4), 149.1 (C-5), 106.1 (C-6), 77.7 (C-7), 79.7 (C-8), 60.7 (C-9), 56.2, 56.4 (2 × OMe)
6 <i>Aleurrites moluccana</i> ²¹	¹ H NMR δ (DMSO- <i>d</i> ₆): 3.60 (m, H-9), 3.85 (s, 2 × OMe), 4.35 (m, H-8), 5.11 (d, <i>J</i> = 8 Hz, H-7), 6.36 (d, <i>J</i> = 9 Hz, H-3), 6.8 (s, H-2' and H-8), 7.04 (s, H-8), 7.36 (s, H-5), 7.99 (d, <i>J</i> = 9 Hz, H-4)
Synthetic	¹ H NMR δ (CDCl ₃): 2.08 (s, OAc), 2.35 (s, OAc); ¹³ C NMR δ (CDCl ₃): 160.92 (C-2), 114.45 (C-3), 142.70 (C-4), 114.30 (C-5), 139.90 (C-6), 146.7 (C-7), 105.04 (C-8), 149.3 (C-9), 113.20 (C-10), 20.50 (MeCOOC-9), 132.90 (C-1), 103.70 (C-2', C-6'), 152.1 (C-3', C-5'), 129.50 (C-4'), 77.20 (C-8'), 62.30 (C-9'), 20.30 (MeCOOC-4').168.2 (MeCOOC-4'), 170.1 (MeCOOC-9'), 56.10 (2 × OMe)
7 Aleurites fordii ²²	¹ H NMR δ (DMSO- <i>d</i> ₆): 3.93 (s, 2 × OMe), 3.98 (s, OMe), 5.02 (d, <i>J</i> = 7 Hz, H-7), 6.13 (d, <i>J</i> = 9.5 Hz, H-3), 6.66 (s, H-8), 6.72 (s, H-2', H-6'), 7.92 (d, <i>J</i> = 9.5 Hz, H-4)
Synthetic	¹ H NMR δ (CDCl ₃): 2.07 (s, OAc), 2.36 (s, OAc); ¹³ C NMR δ (CDCl ₃): 112-32 (C-3), 137.64 (C-4), 139.50 (C-5), 128.90 (C-6), 152.3 (C-7), 93.33 (C-8), 149.6 (C-9), 103.3 (C-10), 133.0 (C-1), 104 (C-2', C-6), 152.74 (C-3', C-5), 129.10 (C-4'), 77.40 (C-7'), 75.23 (C-8'), 62.59 (C-9'), 161.21 (CO)

8 Daphne oleoide ²³	¹ H NMR δ (DMSO- d_6): 7.90 (d, $J = 9.5$ Hz, H-4), 7.30 (d, $J = 8.6$ Hz, H-5), 7.06 (d, $J = 8.5$ Hz, H-6), 6.92 (s, H-2 ["] , H-6"), 6.35 (d, $J = 9.5$ Hz, H-3), 5.24 (d, $J = 2.4$ Hz, H-1"), 5.12 (d, $J = 7.4$ Hz, H-1), 4.65 (m, H-2), 4.15 (m, H-3), 3.82 (s, 2 × OMe); ¹³ C NMR δ (DMSO- d_6): 160.3 (C-2), 113.5 (C-3), 144.4 (C-4), 119.6 (C-5), 113.1 (C-6), 147.4 (C-7), 138.9 (C-8), 149.4 (C-9), 113.7 (C-10), 77.4 (C-1), 79.6 (C-2), 60.9 (C-3), 127.1 (C-1), 105.8 (C-2", C-6"), 150.1 (C-3", C-5") 133.8 (C-4"), 100.4 (C-1"), 72.8 (C-2"), 74.0 (C-3"), 70.8 (C-4"), 72.5 (C-5"), 61.8 (C-6"), 56.2 (2 × OMe)
Synthetic	¹ H NMR δ (DMSO-d ₆): 2.27 (s, 3CO OMe), 2.24 (s, 2 × OAc); ¹³ C NMR δ (DMSO-d ₆): 170.5, 170.3, 170.2, 169.2, 168.8 (5 × OAc), 20.8, 20.6, 20.4, 20.3, 20.2 (5 × OAc)
9 Mallotus apelta ²⁵	¹ H NMR δ (DMSO- <i>d</i> ₆): 3.68 (br, H-9), 3.76 (s, MeO-3), 3.79 (s, MeO-6), 4.24 (m, H-8), 4.93 (d, <i>J</i> = 7.8 Hz, H-7), 6.35 (d, <i>J</i> = 9.6 Hz, H-3), 6.53 (s, H-6), 6.58 (s, H-2), 6.92 (s, H-5), 7.98 (d, <i>J</i> = 9.6 Hz, H-4), 8.48 (s, HO-4), 9.06 (s, HO-5); ¹³ C NMR δ (DMSO- <i>d</i> ₆): 160.05 (C-2), 113.22 (C-3), 144.85 (C-4), 100.86 (C-5), 145.30 (C-6), 137.06 (C-7), 131.64 (C-8), 138.06 (C-9), 111.26 (C-10), 125.87 (C-1), 103.49 (C-2), 148.37 (C-3), 145.75 (C-4), 134.83 (C-5), 108.75
	6), 76.35 (C-7), 77.95 (C-8), 59.88 (C-9), 56.01 (OMe-6), 55.88 (OMe-3)
10 Duranta repens ²⁶	¹ H NMR δ (CDCl ₃): 1.86 (s, OAc), 3.53 (dd, <i>J</i> = 12.6, 2.8 Hz, H-9b), 3.80 (dd, <i>J</i> = 12.6, 1.9 Hz, H-9a), 3.86 (s, OMe-6), 3.87 (s, OMe-3'), 4.18 (ddd, <i>J</i> = 8.0, 2.8, 1.9 Hz, H-8'), 5.04 (d, <i>J</i> = 8.0 Hz, H-7), 6.31 (d, <i>J</i> = 9.5 Hz, H-3), 6.82 (s, H-5), 6.85 (d, <i>J</i> = 8.1 Hz, H-5), 6.94 (dd, <i>J</i> = 8.1, 1.9 Hz, H-6), 7.05 (d, <i>J</i> = 1.9 Hz, H-2), 7.86 (d, <i>J</i> = 9.5 Hz, H-4), 8.55 (s, HO-4'); ¹³ C NMR δ (CDCl ₃): 160.1 (C-2), 114.2 (C-3), 144.0 (C-4), 100.7 (C-5), 145.7 (C-6), 137.1 (C-7), 132.0 (C-8), 140.1 (C-9), 111.9 (C-10), 130.9 (C-1) 111.9 (C-2), 151.1 (C-3) 148.6 (C-4) 116.3 (C-5) 121.8 (C-6) 77.3 (C-7), 76.6 (C-8) 62.5 (C-9) 176.2 (OCOMe), 23.2 (OCOMe), 56.4 (MeO-6), 56.8 (MeO-3)
11 Duranta repens ²⁶	¹ H NMR δ (CDCl ₃ : MeOH): 1.87 (s, OC OMe), 3.54 (dd, $J = 12.6, 2.6$ Hz, H-9b), 3.83 (dd, $J = 12.6, 1.8$ Hz, H-9a), 3.85 (s, OMe-6), 3.88 (s, OMe-3), 3.90 (s, OMe-4), 4.18 (ddd, $J = 8.1, 2.6, 1.8$ Hz, H-8), 5.03 (d, $J = 8.1$ Hz, H-7), 6.30 (d, $J = 9.5$ Hz, H-3), 6.80 (s, H-5), 6.84 (d, $J = 8.1$ Hz, H-5), 6.94 (dd, $J = 8.1, 1.9$ Hz, H-6), 7.04 (d, $J = 1.8$ Hz, H-2), 7.85 (d, $J = 9.5$ Hz, H-4); ¹³ C NMR δ (CDCl ₃ : CD ₃ OD): 160.4 (C-2), 113.8 (C-3), 144.3 (C-4), 100.9 (C-5), 145.8 (C-6), 137.5 (C-7), 131.9 (C-8), 139.6 (C-9), 111.5 (C-10), 130.5 (C-1), 105.9 (C-2), 150.0 (C-3), 139.6 (C-4), 150.0 (C-5), 105.9 (C-6), 77.0 (C-7), 76.5 (C-8), 62.0 (C-9), 176.0 (OCOMe), 32.0 (OCOMe), 56.3 (MeO-6), 56.8 (MeO-3), 56.8 (MeO-5)
12 Duranta repens ²⁶	¹ H NMR δ (CDCl ₃ : MeOH): 1.87 (s, OC OMe), 3.54 (dd, $J = 12.5, 2.7$ Hz, H-9b), 3.82 (dd, $J = 12.5, 1.9$ Hz, H-9a), 3.87 (s, OMe-6), 3.88 (s, OMe-3' and 5), 4.19 (ddd, $J = 8.1, 2.7, 1.9$ Hz, H-8), 5.04 (d, $J = 8.1$ Hz, H-7), 6.32 (d, $J = 9.5$ Hz, H-3), 6.77 (s, H-2', H-6), 6.82 (s, H-5), 7.87 (d, $J = 9.5$ Hz, H-4), 8.55 (s, OH-4); ¹³ C NMR δ (CDCl ₃ : CD ₃ OD): 160.4 (C-2), 113.8 (C-3), 144.3 (C-4), 100.9 (C-5), 145.8 (C-6), 137.5 (C-7), 131.9 (C-8), 139.6 (C-9), 111.5 (C-10), 130.5 (C-1), 105.9 (C-2), 150.0 (C-3), 139.6 (C-4), 150.0 (C-5), 105.9 (C-6), 77.0 (C-7), 76.5 (C-8), 62.0 (C-9), 176.0 (OCOMe) 32.0 (OCOMe) 56.3 (MeO-6) 56.8 (MeO-5)
13 <i>Rhododendron</i> <i>collettianum</i> ²⁷	¹ H NMR δ (C ₅ D ₅ N): 6.38 (d, $J = 9.4$ Hz, H-3), 7.71 (d, $J = 9.4$ Hz, H-4), 6.72 (s, H-5), 7.41 (d, $J = 1.9$ Hz, H-2), 7.27 (d, $J = 8.1$ Hz, H-5), 7.35 (dd, $J = 8.1$, 1.9 Hz, H-6), 5.55 (d, $J = 8.0$ Hz, H-7), 4.51 (dt, $J = 7.8$ Hz, H-8), 4.26 (br d, $J = 12.5$ Hz, H-9), 3.68 (s, OMe), 3.80 (s, OMe); ¹³ C NMR δ (C ₅ D ₅ N): 161.5 (C-2), 114.1 (C-3), 144.5 (C-4), 101.5 (C-5), 146.5 (C-6), 139.0 (C-7), 132.7 (C-8), 139.6 (C-9), 112.5 (C-10), 127.2 (C-1), 113.0 (C-2), 149.3 (C-3), 148.1 (C-4), 117.3 (C-5), 122.1 (C-6), 77.5 (C-7), 80.5 (C-8), 61.5 (C-9), 56.0 (OMe-6), 56.1 (OMe-3)
14 Antidesma pentandrum ²⁸	¹ H NMR δ (CDCl ₃): 7.50 (s, H-4), 6.51 (s, H-5), 6.12 (dd, $J = 17.4$, 10.6 Hz, H-10), 5.09 (d, $J = 17.4$ Hz, Ha-11), 5.10 (d, $J = 10.6$ Hz, Hb-11), 1.49 (s, Me-12), 1.49 (s, Me-13), 6.61 (s, H-2), 6.61 (s, H-6), 4.61 (d, $J = 7.6$ Hz, H-7), 4.21 (dq, $J = 7.6$, 6.4 Hz, H-8), 1.29 (d, $J = 6.4$ Hz, Me-9) 3.88 (s, MeO-6) 3.92 (s, MeO-3), 3.92 (s, MeO-5), 5.62 (s, OH-4); ¹³ C NMR δ (CDCl ₃): 159.5 (C-2), 132.7 (C-3), 138.0 (C-4), 111.9 (C-4a), 99.9 (C-5), 145.6 (C-6), 136.6 (C-7), 131.8 (C-8), 137.9 (C-8a), 40.5 (C-9), 145.5 (C-10), 112.1 (C-11), 26.0 (C-12), 26.0 (C-13), 127.0 (C-1), 104.5 (C-2), 147.3 (C-3), 135.6 (C-4), 147.3 (C-5), 104.5 (C-6), 81.6 (C-7), 74.3 (C-8), 17.1 (C-9), 56.2 (MeO-6), 56.5 (MeO-3), 56.5 (MeO-5)
15 Antidesma pentandrum ²⁸	¹ H NMR δ (CDCl ₃): 7.49 (s, H-4), 6.47 (s, H-5), 6.19 (dd, <i>J</i> = 17.8, 10.4 Hz, H-10), 5.09 (d, <i>J</i> = 17.8 Hz, Ha-11), 5.10 (d, <i>J</i> = 10.4 Hz, Hb-11), 1.49 (s Me-12), 1.49 (s Me-13), 6.84 (br. s H-2), 6.87 (br. s, H-5), 6.87 (br. s, H-6), 4.94 (d, <i>J</i> = 6.3 Hz, H-7), 4.06 (d, <i>J</i> = 6.3 Hz, H-8), 5.78 (dd, <i>J</i> = 17.8, 10.4 Hz, H-10), 4.87 (d, <i>J</i> = 17.8 Hz, Ha-11), 4.88 (d, <i>J</i> = 10.4 Hz, Hb-11), 0.96 (s Me-12), 1.19 (s Me-13), 3.84 (s, OMe-6), 3.86 (s, OMe-3), 5.72 (s, OH-4); ¹³ C NMR δ (CDCl ₃): 159.7 (C-2), 132.6 (C-3), 138.1 (C-4), 111.9 (C-4a), 99.8 (C-5), 145.4 (C-6), 136.0 (C-7), 132.0 (C-8), 137.9 (C-8a), 40.5 (C-9), 145.6 (C-10), 112.1 (C-11), 26.0 (C-12), 26.0 (C-13), 128.8 (C-1), 110.9 (C-2), 146.6 (C-3), 146.5 (C-4), 114.4 (C-5), 121.8 (C-6), 77.3 (C-7), 82.6 (C-8), 40.9 (C-9), 142.7 (C-10), 112.7 (C-11), 25.1 (C-12), 23.1 (C-13), 56.0 (MeO-6), 56.3 (MeO-3)
16 Antidesma pentandrum ²⁸	¹ H NMR δ (CDCl ₃): 7.46 (s H-4), 6.50 (s H-5), 6.17 (dd, $J = 17.8, 10.2$ Hz, H-10), 5.05 (d, $J = 17.8$ hz, Ha-11), 5.07 (d, $J = 10.2$ Hz, Hb-11), 1.45 (s Me-12), 1.45 (s Me-13), 6.86 (s, H-2), 6.86 (s H-5), 6.86 (s, H-6), 4.99 (d, $J = 5.6$ Hz, H-7), 4.15 (d, $J = 5.6$ Hz, H-8), 5.66 (dd, $J = 17.8, 10.4$ Hz, H-10), 4.91 (d, $J = 17.8$ Hz, H-11), 4.92 (d, $J = 10.4$ Hz, H-11), 0.99 (s, Me-12), 1.17 (s, Me-13), 3.86 (s, OMe-6), 3.76 (s, OMe-3), 5.71 (s, OH-4); ¹³ C NMR δ (CDCl ₃): 159.7 (C-2), 132.5 (C-3), 138.2 (C-4), 111.7 (C-4a), 101.2 (C-5), 145.6 (C-6), 136.9 (C-7), 131.6 (C-8), 138.3 (C-8a), 40.6 (C-9), 45.8 (C-10), 112.2 (C-11), 26.2 (C-12), 26.2 (C-13), 129.2 (C-1), 111.0 (C-2), 146.5 (C-3), 146.8 (C-4), 114.4 (C-5), 121.7 (C-6), 76.2 (C-7), 83.0 (C-8), 41.3 (C-9), 143.1 (C-10), 113.1 (C-11), 25.2 (C-12), 23.2 (C-13), 56.9 (MeO-6), 56.2 (MeO-3)
17 Antidesma pentandrum ²⁸	¹ H NMR δ (CDCl ₃): 7.47 (s H-4), 6.46 (s H-5), 6.18 (dd, $J = 17.5$, 11.0 Hz, H-10), 5.09 (d, $J = 17.5$ Hz, Ha-11), 5.09 (d, $J = 11.0$ Hz, Hb-11), 1.49 (s Me-12), 1.49 (s Me-13), 6.75-6.85 (m, H-2), 6.75-6.85 (m, H-5), 6.75-6.85 (m, H-6), 4.93 (d, $J = 5.6$ Hz, H-7), 4.02 (d, $J = 5.6$ Hz, H-8), 5.76 (dd, $J = 17.2$, 11.0 Hz, H-10), 4.87 (d, $J = 11.0$ Hz, Ha-11), 4.88 (d, $J = 17.2$ Hz, Hb-11), 0.96 (s, Me-12), 1.15 (s, Me-13), 3.84 (s, OMe-6)
18 <i>Protium unifoliolatum</i> ²⁹	¹ H NMR δ (CDCl ₃): 6.28 (d, <i>J</i> = 9.65 Hz, H-3), 7.96 (d, <i>J</i> = 9.65 Hz, H-4), 3.96 (s, H-11), 3.89 (s, H-11), 3.93 (s, H-13), 6.86 (d, <i>J</i> = 2.12 Hz, H-2), 6.98 (d, <i>J</i> = 8.12 Hz, H-5), 6.91 (dd, <i>J</i> = 8.12, 2.12 Hz, H-6), 4.69 (d, <i>J</i> = 8.01 Hz, H-7), 4.15 (dd, <i>J</i> = 8.01, 6.36 Hz, H-8), 1.29 (d, <i>J</i> = 6.36 Hz, Me-9); ¹³ C NMR δ (CDCl ₃): 160.57 (C-2), 113.08 (C-3), 138.93 (C-4), 142.19 (C-5), 137.87 (C-6), 141.96 (C-7), 128.58 (C-8), 139.33 (C-9), 107.00 (C-10), 62.25 (C-11).

19 Mallotus apelta ³⁰	¹ H NMR δ (DMSO-d ₆): 6.26 (d, $J = 9.5$ Hz, H-3), 7.90 (d, $J = 9.5$ Hz, H-4), 6.65 (s, H-5), 6.53 (d, $J = 2.0$ Hz, H-2), 6.58 (d, $J = 2.0$ Hz, H-6), 4.91 (d, $J = 8.0$ Hz, H-7), 4.19-4.22 (m, H-8), 3.39 (dd, $J = 12.5$, 4.5 Hz, H-9), 3.65 (dd, $J = 12.5$, 2.0 Hz, H-9), 9.58 (s, OH-6), 9.00 (s, OH-3), 8.44 (s, OH-4), 3.75 (OMe-5); ¹³ C NMR δ (DMSO-d ₆): 160.1 (C-2), 113.0 (C-3), 143.0 (C-4), 103.9 (C-5), 144.8 (C-6), 136.6 (C-7), 131.7 (C-8), 136.8 (C-9), 111.5 (C-10), 126.0 (C-1), 108.7 (C-2), 145.7 (C-3), 134.7 (C-4), 148.3 (C-5), 103.4 (C-6), 76.2 (C-7), 77.9 (C-8), 59.8 (C-9), 55.9 (OMe-5)
20 Mallotus apelta ³⁰	¹ H NMR δ (DMSO-d ₆): 6.25 (d, <i>J</i> = 9.5 Hz, H-3), 7.89 (d, <i>J</i> = 9.5 Hz, H-4), 6.68 (s, H-5), 6.53 (d, <i>J</i> = 2.0 Hz, H-2), 6.58 (d, <i>J</i> = 2.0 Hz, H-6), 4.87 (d, <i>J</i> = 8.0 Hz, H-7), 4.21-4.25 (m, H-8), 3.42 (dd, <i>J</i> = 12, 5 Hz, H-9), 3.54 (dd, <i>J</i> = 12.0, 3.5 Hz, H-9), 9.49 (s, OH-6), 9.02 (s, OH-3), 8.46 (s, OH-4), 3.76 (OMe-5); ¹³ C NMR δ (DMSO-d ₆): 160.0 (C-2), 113.0 (C-3), 142.9 (C-4), 104.0 (C-5), 144.7 (C-6), 136.1 (C-7), 131.9 (C-8), 136.7 (C-9), 111.4 (C-10), 125.8 (C-1), 108.7 (C-2), 145.7 (C-3), 134.8 (C-4), 148.4 (C-5), 103.3 (C-6), 75.9 (C-7), 78.2 (C-8), 60.1 (C-9), 55.9 (OMe-5))
21 <i>Mallotus apelta</i> ³⁰	¹ H NMR δ (DMSO-d ₆): 6.30 (d, $J = 9.5$ Hz, H-3), 7.94 (d, $J = 9.5$ Hz, H-4), 6.92 (s, H-5), 6.54 (d, $J = 1.5$ Hz, H-2), 6.59 (d, $J = 1.5$ Hz, H-6), 4.90 (d, $J = 8.0$ Hz, H-7), 4.21- 4.24 (m, H-8), 3.37 (dd, $J = 12.5$, 4.0 Hz, H-9), 3.62 (dd, $J = 12.5$, 1.5 Hz, H-9), 3.83 (s, OMe-6) 9.02 (s, OH-3), 8.46 (s, OH-4), 3.76 (OMe-5); ¹³ C NMR δ (DMSO-d ₆): 159.9 (C-2), 113.1 (C-3), 144.8 (C-4), 100.9 (C-5), 145.2 (C-6), 138.0 (C-7), 131.8 (C-8), 136.8 (C-9), 111.1 (C-10), 125.8 (C-1), 108.7 (C-2), 145.7 (C-3), 134.8 (C-4), 148.3 (C-5), 103.3 (C-6), 75.9 (C-7), 78.3 (C-8), 59.8 (C-9), 55.9 (OMe-6), 55.8 (OMe-5)
22 Eurycorymbus cavaleriei ³²	¹ H NMR δ (DMSO-d ₆): 6.31 (d, <i>J</i> = 9.5 Hz, H-3), 7.94 (d, <i>J</i> = 9.5 Hz, H-4), 6.93 (s, H-5), 6.59 (d, <i>J</i> = 1.5 Hz, H-2), 6.54 (d, <i>J</i> = 1.5 Hz, H-6), 4.90 (d, <i>J</i> = 7.5 Hz, H-7), 4.23 (m, H-8), 3.62 (d, <i>J</i> = 12.0 Hz, H-9), 3.83 (s, OMe-6), 3.76 (s, OMe-3); ¹³ C NMR δ (DMSO-d ₆): 160.0 (C-2), 113.2 (C-3), 144.9 (C-4), 100.9 (C-5), 145.3 (C-6), 136.8 (C-7), 131.9 (C-8), 138.1 (C-9), 111.1 (C-10), 125.8 (C-1), 103.3 (C-2), 148.4 (C-3), 134.8 (C-4), 145.8 (C-5), 108.8 (C-6), 76.0 (C-7), 78.4 (C-8), 59.9 (C-9), 55.8 (OMe-6), 56.0 (OMe-3)
23 Duranta repens L ³³	¹ H NMR δ (CDCl ₃): 6.33 (d, <i>J</i> = 9.5 Hz, H-3), 7.81 (d, <i>J</i> = 9.5 Hz, H-4), 6.78 (s, H-5), 7.10 (d, <i>J</i> = 1.9 Hz, H-2), 6.83 (d, <i>J</i> = 8.0 Hz, H-5), 6.97 (dd, <i>J</i> = 8.0, 1.9 Hz, H-6), 5.09 (d, <i>J</i> = 8.1 Hz, H-7), 4.21 (ddd, <i>J</i> = 8.1, 2.5, 1.7 Hz, H-8), 3.90 (dd, <i>J</i> = 12.5, 2.5 Hz, H-9), 4.13 (dd, <i>J</i> = 12.5, 1.7 Hz, H-9), 6.41 (d, <i>J</i> = 15.9 Hz, H-2), 7.51 (d, <i>J</i> = 15.9 Hz, H-3), 7.40 (d, <i>J</i> = 8.0 Hz, H-5), 6.89 (d, <i>J</i> = 8.0 Hz, H-6), 6.89 (d, <i>J</i> = 8.0 Hz, H8), 7.40 (d, <i>J</i> = 8.0 Hz, H-9), 3.83 (s, OMe-6), 3.89 (s, OMe-3); ¹³ C NMR δ (CDCl ₃): 160.5 (C-2), 114.7 (C-3), 144.3 (C-4), 100.6 (C-5), 137.1 (C-6), 132.2 (C-7), 140.8 (C-8), 146.0 (C-9), 112.0 (C-10), 130.9 (C-1), 111.7 (C-2), 149.8 (C-3), 148.5 (C-4), 116.5 (C-5), 121.9 (C-6), 76.9 (C-7), 75.8 (C-8), 62.5 (C-9), 165.7 (C-1), 117.0 (C-2), 144.7 (C-3), 125.9 (C-4), 130.2 (C-5), 116.0 (C-6), 159.3 (C-7), 116.0 (C-8), 130.2 (C-9), 56.4 (OMe-6), 56.0 (OMe-3)
24 Duranta repens L ³³	¹ H NMR δ (CDCl ₃): 6.31 (d, <i>J</i> 9.5 Hz, H-3), 7.83 (d, <i>J</i> = 9.5 Hz, H-4), 6.80 (s, H-5), 7.07 (d, <i>J</i> = 1.8 Hz, H-2), 6.84 (d, 8.2 Hz, H-5), 6.95 (dd, <i>J</i> = 8.2, 1.8 Hz, H-6), 5.07 (d, <i>J</i> = 8.1 Hz, H-7), 4.20 (ddd, <i>J</i> = 8.1, 2.6, 1.7 Hz, H-8), 3.90 (dd, <i>J</i> = 12.6, 2.6 Hz, H-9), 4.10 (dd, <i>J</i> = 12.6, 1.7 Hz, H-9), 6.45 (d, <i>J</i> = 16.0 Hz, H-2), 7.55 (d, <i>J</i> = 16.0 Hz, H-3), 7.10 (d, <i>J</i> = 2.1 Hz, H-5), 6.70 (d, <i>J</i> = 8.0 Hz, H-8), 7.02 (dd, <i>J</i> = 8.0, 2.1 Hz, H-9), 3.80 (s, OMe-6), 3.85 (s, OMe-3), 3.77 (s, OMe-6); ¹³ C NMR δ (CDCl ₃): 160.3 (C-2), 114.2 (C-3), 144.0 (C-4), 100.8 (C-5), 137.3 (C-6), 132.5 (C-7), 140.9 (C-8), 146.3 (C-9), 111.8 (C-10), 130.6 (C-1), 111.8 (C-2), 149.9 (C-3), 148.7 (C-4), 116.3 (C-5), 121.7 (C-6), 77.2 (C-7), 76.1 (C-8), 62.3 (C-9), 165.5 (C-1), 117.3 (C-2), 144.9 (C-3), 126.4 (C-4), 112.9 (C-5), 148.2 (C-6), 150.3 (C-7), 116.0 (C-8), 124.1 (C-9), 56.3 (OMe-6), 55.9 (OMe-3), 56.1 (OMe-6)
25 Duranta repens L ³³	¹ H NMR δ (CDCl ₃): 6.30 (d, <i>J</i> = 9.5 Hz, H-3), 7.85 (d, <i>J</i> = 9.5 Hz, H-4), 6.80 (s, H-5), 7.05 (d, <i>J</i> = 1.9 Hz, H-2), 6.81 (d, <i>J</i> = 8.1 Hz, H-5), 6.94 (dd, <i>J</i> = 8.1, 1.9 Hz, H-6), 5.06 (d, <i>J</i> = 8.1 Hz, H-7), 4.19 (ddd, <i>J</i> = 8.1, 2.7, 1.9 Hz, H-8), 3.89 (dd, <i>J</i> = 12.6, 2.7 Hz, H-9), 4.15 (dd, <i>J</i> = 12.6, 1.9 Hz, H-9), 6.38 (d, <i>J</i> = 16.2 Hz, H-2), 7.47 (d, <i>J</i> = 16.2 Hz, H-3), 7.08 (d, <i>J</i> = 2.2 Hz, H-5), 6.90 (d, <i>J</i> = 8.0 Hz, H-8), 6.95 (dd, <i>J</i> = 8.0, 2.2 Hz, H-9), 3.81 (s, OMe-6), 3.86 (s, OMe-3); ¹³ C NMR δ (CDCl ₃): 160.4 (C-2), 113.9 (C-3), 144.2 (C-4), 100.6 (C-5), 137.0 (C-6), 132.3 (C-7), 140.7 (C-8), 146.2 (C-9), 111.9 (C-10), 130.7 (C-1), 111.7 (C-2), 149.7 (C-3), 148.4 (C-4), 116.1 (C-5), 121.8 (C-6), 77.3 (C-7), 76.0 (C-8), 62.4 (C-9), 165.3 (C-1), 117.5 (C-2), 144.8 (C-3), 126.3 (C-4), 113.5 (C-5), 144.7 (C-6), 147.3 (C-7), 116.0 (C-8), 123.9 (C-9), 56.5 (OMe-6), 56.0 (OMe-3)
26 Duranta repens L ³³	¹ H NMR δ (CDCl ₃): 6.32 (d, $J = 9.5$ Hz, H-3), 7.83 (d, $J = 9.5$ Hz, H-4), 6.79 (s, H-5), 6.89 (s, H-2), 6.89 (s, H-6), 5.03 (d, $J = 8.1$ Hz, H-7), 4.05 (ddd, $J = 8.1$, 2.6, 1.8 Hz, H-8), 3.93 (dd, $J = 12.5$, 1.8 Hz, H-9), 4.13 (dd, $J = 12.5$, 2.6 Hz, H-9), 7.50 (d, $J = 2.0$ Hz, H-3), 6.96 (d, $J = 8.3$ Hz, H-6), 7.46 (dd, $J = 8.3$, 2.0 Hz, H-7), 3.79 (s, OMe-6), 3.85 (s, OMe-3), 3.85 (s, OMe-5); ¹³ C NMR δ (CDCl ₃): 160.2 (C-2), 114.4 (C-3), 144.0 (C-4), 100.5 (C-5), 137.3 (C-6), 132.4 (C-7), 140.6 (C-8), 146.3 (C-9), 112.0 (C-10), 130.6 (C-1), 111.63 (C-2), 149.9 (C-3), 148.6 (C-4), 116.4 (C-5), 122.3 (C-6), 77.0 (C-7), 75.9 (C-8), 62.7 (C-9), 163.0 (C-1), 124.2 (C-2), 115.7 (C-3), 144.1 (C-4), 145.6 (C-5), 116.2 (C-6), 127.9 (C-7), 56.2 (OMe-6), 56.6 (OMe-5)
21 Jatropha gossypifolia ²⁴	¹ H NMR δ (CDCl ₃): 4.42-4.28, (m, H-9); Remaining data is same as 1 ; ¹³ C NMR δ (CDCl ₃): 62.75 (C-9); Remaining data is same as 1
28 Cleome viscose ²⁰	¹ H NMR δ (DMSO-d ₆): 6.32 (d, $J = 9.4$ Hz, H-3), 7.96 (d, $J = 9.4$ Hz, H-4), 6.95 (s, H-5), 6.77 (s, H-2), 6.77 (s, H-6), 4.96 (d, $J = 8.1$ Hz, H-7), 4.37 (m, H-8), 3.39 (dd, $J = 4.4$, 12.4 Hz, H-9), 3.63 (br d, $J = 12.4$ Hz, H-9), 3.78 (s, 2 × OMe), 3.85 (s, OMe), 5.04 (s, OH), 8.61 (s, OH); ¹³ C NMR δ (C ₅ D ₅ N): 160.7 (C-2), 113.7 (C-3), 144.3 (C-4), 101.1 (C-5), 146.2 (C-6), 138.6 (C-7), 133.1 (C-8), 139.4 (C-9), 111.7 (C-10), 126.4 (C-1), 106.4 (C-2), 149.3 (C-3), 149.3 (C-5), 106.4 (C-6), 77.4 (C-7), 80.1 (C-8), 61.0 (C-9), 56.3 (2 × OMe), 56.1 (OMe)

Seligmann and coworkers¹⁶ described the isolation of new coumarinolignoid, 2-(4-hydroxy-3,5-dimethoxyphenyl)-3-hydroxymethyl-2,3-dihydro-1, 4, 5-trioxaphenanthren-6-one, (4, 29) known as daphneticin from the roots of *Daphne tangutica*. Cottiglia *et al.*¹⁷ reported the isolation of same compound from the leaves of *Daphne gnidium* L. in 2002, which showed promising biological activity. Some other new

coumarinolignoids were also isolated from *Hemidesmus indicus* R. Br. and *Salsola laricifolia1*⁸.

Aquillochin also known as cleomiscosin C (5) was isolated by Cordell *et al.*¹⁹ from *Aquilaria agallocha*. The complete spectral detail of all three cleomiscosins from *Cleome viscose* L. was discussed by Ray *et al.*²⁰. The antihepatotoxic activity of 1, 3 and 5 was also explored.

Fig. 2. Regioisomers of coumarinolignoid

TABLE-3 MOIETIES FOR 1a						
Compd. No	R	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	$\mathbf{R}^{?}$
1	OMe	CH ₂ OH	Н	OH	OMe	Н
27	OMe	CH ₂ OAc	Н	OH	OMe	Н
2	OMe	CH ₃	Н	OH	OMe	Н
4	Н	CH ₂ OH	OMe	OH	OMe	Н
5	OMe	CH ₂ OH	OMe	OH	OMe	Н
9	OMe	CH ₂ OH	OMe	OH	Н	Н
10	OMe	CH ₂ OAc	OMe	OH	Н	Н
11	OMe	CH ₂ OAc	OMe	OMe	Н	Н
12	OMe	CH ₂ OAc	OMe	OH	OMe	Н
13	OMe	CH ₂ OH	OMe	OH	Н	Н
18	OMe	CH_3	Н	OH	OMe	OMe
19	OH	CH ₂ OH	OH	OH	OMe	Н

TABLE-4 MOIETIES FOR 1b					
Compd. No	R	\mathbb{R}^1	\mathbb{R}^2	R ³	
3	OMe	CH ₂ OH	Н	OMe	
30	OMe	CH ₃	Н	OMe	
29	Н	CH ₂ OH	OMe	OMe	
28	OMe	CH ₂ OH	OMe	OMe	
20	OH	CH ₂ OH	OH	OMe	
21	OMe	CH ₂ OH	OH	OMe	
22	OMe	CH ₂ OH	OMe	OH	

Shamsuddin and co-workers²¹ described the isolation of new coumarinolignoid, moluccanin (**6**, **31**) from the stems of *Aleurrites moluccana* in 1988. In the next year aleuritin (**7**) was isolated by the same research group²² from the stems of *Aleurites fordii*. After a decade Ahmad *et al.*²³ isolated a new coumarinolignoid glycoside, daphneticin-4"-O- α -D-glucopyranoside (**8**) together with known daphneticin from the extract of *Daphne oleoides*. The first natural acylated coumarinolignoids²⁷ was isolated from *Jatropha gossypifolia* in 1999 by Vankatasin²⁴.

Cheng and coworkers²⁵ reported the isolation of a new coumarinolignoid, 5'-demethylaquillochin (9) along with two known compounds 1 and 5 from the roots of *Mallotus apelta* (Fig. 3).

Iqbal and coworkers²⁶ achieved the isolation of three new coumarinolignoids, durantin A-C, (**10**, **11** and **12**) from *Duranta repens*. Moreover, compound **1** was also extracted and characterized from the same plant. These compounds exhibited phosphodiesterase inhibitory activity (Table-6).

Hussain *et al.*²⁷ explored new coumarinolignoid 8'-epicleomiscosin A (13) from the aerial parts of *Rhododendron* *collettianum*. In addition, two known coumarinolignoids **1** and **5** were also reported first time from this plant. Compound **13** has strong inhibitory activity against enzyme tyrosine as compared to the standard tyrosine inhibitiors, making it valuable for the treatment of hyperpigmentation.

Cheng *et al.*²⁸ described the isolation of four new coumarinolignoids, antidesmanin A-D 7-(1,1-dimethylallyl)-2,3-dihydro-3-(4-hydroxy-3,5-dimethoxyphenyl)-10-methoxy-2-methyl-6*H*-1,4,5-trioxaphenanthren-6-one (**14**), 3,7-*bis*-(1,1-dimethylallyl)-2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-10-methoxy-6*H*-1,4,5-trioxaphenanthren-6-one (**15**), 2,7-*bis*-(1,1-dimethylallyl)-2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-10-methoxy-6*H*-1,4,5-trioxaphenanthren-6-one (**16**), 2-(3,4-dihydroxyphenyl)-3,7-*bis*-(1,1-dimethylallyl)-2,3-dihydroxy-10-methoxy-6*H*-1,4,5-trioxaphenanthren-6-one or-3-(3,4-dihydroxyphenyl)-2,7-*bis*-(1,1-dimethylallyl)-2,3-dihydro-10-methoxy-6*H*-1,4,5-trioxaphenanthren-6-one (**17**) from the root of *Formosan Antidesma* pentandrum var. barbatum. All compounds except **15** were evaluated as cytotoxic agents.

Magalhaes *et al.*²⁹ isolated the derivative of **2** as 5-methoxypropacin (**18**) from the wood of *Protium unifoliolatum*. The structure of this novel compound was elucidated by using infrared, 1D, 2D-NMR and mass spectroscopic techniques.

Feng and his colleagues³⁰ reported three new coumarinolignoids, malloapelin A-C, 3-(3,4-dihydroxy-5-methoxyphenyl)-2,3-dihydro-5-hydroxy-2-(hydroxymethyl)-9*H*-pyrano[2,3-f][1,4]benzodioxin-9-one) as **19**, 2-(3,4-dihydroxy-5-methoxyphenyl)-2,3-dihydro-5-hydroxy-3-(hydroxymethyl)- 9*H*-pyrano[2,3-f][1,4]benzodioxin-9-one) as **20** and 2-(3,4-dihydroxy-5-methoxyphenyl)-2,3-dihydro-3-(hydroxymethyl)-5-methoxyphenyl)-2,3-dihydro-<math>3-(hydroxymethyl)-5-methoxyphenyl)-2,3-dihydro-3-(hydroxymethyl)-5-methoxyphenyl)-2,3-dihydroxymethyl)-2,3-dihydroxymethyl)-2,3-dihydroxymethyl)-2,3-dihydroxymethyl)-2,3-dihydroxymethyl)-2,3-dihydroxymet

Michalet and coworkers³¹ isolated the cleomiscosin A from the bark of *Christiana africana*. Moreover, this plant is a rich source of other natural products like alkaloids, flavonoids and terpenoids. Isolation of new coumarinolignoid, 7',8'-dihydro-7'-(3'-methoxy-4',5'-dihydroxyphenyl)-8'-(hydroxymethyl)-6methoxy-2*H*-pyrano[2,3-f]-7,8-benzodioxin-2-one) (**22**) commonly called 5'-hydroxycleomiscosin, from the twigs of *Eurycorymbus cavaleriei* was recently described by Zhang *et al.*³² (Fig. 4). Biological studies showed that **22** has quinone reductase induction activity.

In 2009, Ahmad *et al.*³³ reported four new coumarinolignoids; repenins A-D (**23-26**) along with **1** and **10** from the whole plant of *Duranta repens* L. The spectroscopic data established the structure of new compounds. Coumarinolignoids obtained from this source have promising antioxidative scavenging activity.

Syntheses: The first synthesis of cleomiscosin A (1), B (3), C (5), propacin (2, 30) and daphneticin (4) were reported by Cordell and coworkers¹⁹ in 1984 by using chemical and enzymatic oxidation reactions (**Scheme-I**). Different precursors of phenyl propene and coumarin were used to afford isomeric coumarinolignoids at moderate conditions (Table-5).

Fig. 3. Structures of some potent coumarinolignoids

Scheme-I: Cleomiscosin A, B, C, Propacin and Daphneticin

Arnoldi *et al.*³⁴ reported an efficient synthesis of natural propacin (**2**, **30**), cleomiscosin A (**1**) and B (**3**). Equimolar ratio of 7,8-dihydroxy-6-methoxycoumarin and isoeugenol were oxidized with Ag_2O at room temperature to furnish **2** in

Scheme-II: Synthesis of Natural Propacin, Cleomiscosin A and B (The regioisomers were distinguished on the basis of

heteronuclear selective decoupling technique)

An effective approach for the large scale synthesis of cleomiscosin A (1) from methoxymethyl ether of 8-acetyl-7-

Reagents and conditions: a = (i) NaH, THF, 1 h (ii) CH₃-O-CH₂-Cl, 3 h, (iii) 30 % H₂O₂, NaOH, Dioxane b = (i) t-BuOK, DMF, 1 h, rt (ii) ethyl-2-bromo-3-(4-benzyloxy-3-methoxyphenyl)-3-oxopropionate, DMF, 3 h, rt c = (i) 2N HCl-MeOH, (ii) LiBH₄, THF d = CH₃COOH, 5 % H₂SO₄, 60 °C e = (i) 1 % NaOH at 0 °C (ii) MeOH **Scheme-III**: Total Synthesis of Cleomiscosin A

hydroxy-6-methoxycoumarin I was explained by Ito and coworkers³⁵. Ketoester II was prepared by the condensation of I with ethyl-2-bromo-3-(4-benzyloxy-3-methoxyphenyl)-3-oxopropionate. After the removal of methoxy methyl group from II, reduction was achieved by using LiBH₄ that afforded erythro isomer predominantly. The mixture of diol was transformed into acetate IV by 5 % H_2SO_4 in acetic acid in 50 % yield while subsequent base hydrolysis gave cleomiscosin A (1) in 96 % yield (Scheme-III).

	TABLE-5 SYNTHESIS OF COUMARINOLIGNOIDS BY OXIDATION					
S.	Cou-	Phenyl-	Reagents,	Yield of isomeric		
No.	marın	propene	temperature,	coumarinolignoids		
			time	(%)		
1	Ia	Π	Ag ₂ O rt, 20 h	10.4, 6.5 (1, 3)		
2	Ia	Π	HRP 37 °C, 7days	22.6, 2.7 (1 , 3)		
3	Ia	IIb	Ag ₂ O rt, 20 h	4.1 (2 or 30)		
4	Ia	IIb	HRP 37 °C, 7days	29 (2 or 30)		
5	Ia	IIb	HRP-H ₂ O ₂ 14 days, 37 °C	87.2 (2 or 30)		
6	Ia	IIa	Ag ₂ O rt, 18 h	6.8 (5)		
7	Ia	IIa	HRP 37 °C, 14 days	17.5 (5)		
8	Ι	IIa	Ag ₂ O rt, 24 h	1 (29)		
9	Ι	IIa	HRP 37 °C, 19 days	5.8 (29)		

Cordell *et al.*³⁶ proposed a unidirectional method for structure determination of natural 1,4-dioxane ring system like **2**, **30**, **4** and **5**. They used selective INEPT plus program.

Tanaka, Kato and Ito³⁷ have developed a facile synthesis of daphneticin by adopting the mono-debenzylation strategy

of 7,8-dibenzyloxycoumarin in mild conditions. Bromination of ethyl 3-(4-benzyloxy-3,5-dimethoxyphenyl)-3-oxopropionate followed by acetylation furnish ethyl-2-bromo-3-(4-acetoxy-3,5-dimethoxyphenyl)-3-oxopropionate. The monobenzylated product was condensed with prepared bromooxopropionate compound in the presence of NaH followed by LiBH₄ reduction to afford mixture of diols. The cyclization achieved in acetic acid and 36 % HCl at 60 °C to give 68 % yield of exclusive daphneticin (**Scheme-IV**).

Ichino *et al.*³⁸ prepared 7-benzyloxy-8-hydroxycoumarin that was oxidized in the presence of hydrogen peroxide in alkaline medium. This compound was converted into methoxymethyl ether followed by reductive debenzylation. 7-Hydroxy-8-methoxymethoxycoumarin after treatment of methansulfonyl chloride followed by benzylation and base hydrolysis afford 8-benzyloxy-7-hydroxycoumarin. The formation of daphneticin (**4**) was similar as adopted in previous paper³⁷.

The same authors³⁹ also described the total synthesis of daphneticin and its regioisomers and proposed the total synthesis of propacin **2** and its regioisomer **30**. Isobenzyleugenol **I** transformed into its bromohydrin derivative **II** with the help of bromoacetamide. It was oxidized into 1-(4-benzyloxy-3-methoxy phenyl)-2-bromo-1-propanone **III** and condensed with 7-methoxymethyl fraxetin **IV** in the presence of tBuOK to afford condensed product **V**, which was treated with lithium borohydride and gave corresponding alcohol **VI**. It was cyclized by the action of conc. HCl *via* a quinone methide intermediate to afford propacin **2** (**Scheme-V**).

Reagents and conditions: a = (i) *n*-BuCl, anhyd. K₂CO₃, DMF, 60 °C, 13 h (ii) TFA, C₆H₆, rt, 5 h, b = (i) Ethyl-3-(4-benzyloxy-3,5-dimethoxyphenyl)-3-oxopropionate, Br₂, CHCl₃ (ii) Ac₂O, Py, rt, (iii) NaH, DMF-THF c = (i) LiBH₄, dry THF, 0 °C, d = 36 % HCl, CH₃COOH, 60 °C **Scheme-IV**: Total synthesis of daphneticin

Reagents and conditions: a = (i) HClO₄, Dioxane, ice water, *N*-bromoacetamide, 0 °C, 1 h, (ii) Sod. Dithionate, ice water, Et₂O, b = MnO₂, CH₂Cl₂, 30 min., rt, c = Acetonitrile, t-BuOK, 30 min., rt, d = LiBH₄, THF, 0 °C, 10 min., N₂, e = (i) 35 % HCl, CH₃COOH, 60 °C, 30 min.

Scheme-V: Total Synthesis of propacin and its regioisomer

The regioisomer of propacin **30** was synthesized by benzylation of 7-methoxymethyl fraxetin **IV** and condensed with **III**. The condensed product was reduced to gave diastereomeric mixture of alcohol, it was separated and cyclized with the help of conc. HCl/AcOH to furnish **30**.

Ichino *et al.*⁴⁰ described the total synthesis of cleomiscosin C (aquillochin) **5**, its regioisomers and cleomiscosin D **28** from

easily available precursors. Same strategy was adopted in this synthesis as for the total synthesis of cleomiscosin A 1, daphneticin 4 and propacin 2, 30.

Tanaka and coworkers⁴¹ have developed a better way for the synthesis of **1**, **2**, **4** and **5** by the application of diphenyl selenoxide (Ph₂SeO) as oxidizing agent rather Ag₂O/DDQ. Oxidative coupling of 7,8-dihydroxycoumarins took place with

Reagents and conditions: a = (i) Ac₂O, Py, rt, 24 h, 97 % (ii) AlCl₃, 160 °C, 2 h, 97 %, b = (i) BnBr, K₂CO₃, 24 h, 94 % (ii) H₂O₂, NaOH, 20 min., 94 %, c = (i) Ac₂O, Py, rt, 24 h, 90 % (ii) Pd/C (5 %), H₂, EtOAc, rt, 6 h, 92 % d = (i) Piperidine, H₂O, reflux, 48 h, 80 % (ii) CO₂HCH₂CO2Et, Py, Piperidine, reflux, 6 h, (iii) *n*-BuBr, K₂CO₃, 24 h, 80 %, e = (i) LAH, AlCl₃, THF, 30 min., 86 % (ii) AD-mix-β, MeSO₂NH₂, t-BuOH, H₂O, 0 °C, 20 h, 87 %, f = (i) TsCl, Py, 91 % (ii) K₂CO₃, MeOH, rt, 3 h, 80 % g = (i) DIAD, Ph₃P, THF, rt, 24 h, 65 % (ii) K₂CO₄, MeOH, rt, 3 h, 90 % (iii) Pd/C (5 %), H₂, EtOAc, rt, 6 h, 81 %, h = (i) DIAD, Ph₃P, THF, rt, 24 h, 65 % (ii) Pd/C (5 %), H₂, EtOAc, rt, 6 h, 81 % (iii) K₂CO₃, MeOH, rt, 3 h, 90 %

Scheme-VI: First Enantioselective synthesis of daphneticin and its regioisomer

TABLE-6 BIOLOGICAL SIGNIFICANCE OF COUMARINOLIGNOIDS						
No.	Biological Activities	Coumarinolignoids	Sources	Ref.		
1	Antibacterial, Anticancer	Daphneticin	Daphne gnidium L. Daphne tangutica	18, 44		
2	Antihepatotoxic, Modulate humorral and cell mediated immune response	Cleomiscosin A-C	Cleome viscosa	8, 20, 43		
3	Antioxidant	Repenins A-D, Cleomiscosin A, Durantin A	Duranta repens L.	33		
4	Antitumor	Cleomiscosin A	Cleome viscosa	35		
5	Cytotoxic	Antidesmanin A-C, Daphneticin, Cleomiscosin A	Antidesma pentandrum, Daphne tangutica, Cleome viscose	28, 17, 8		
6	Hepatoprotective	Malloapelin C	Mallotus apelta	30		
7	Phosphodiesterase inhibitor	Cleomiscosin A, Durantin A-C	Duranta repens	26		
8	Quinone reductase induction activity	5'-Hydroxycleomiscosin	Eurycorymbus cavaleriei	32		
9	Tyrosine Inhibitor	8'-Epi-cleomiscosin A	Rhododendron collettianum	27		

phenylpropenes. This method induced high stereo- and regioselectivity in products. According to the mechanism, the hydroxyl group in 7, 8-dihydroxycoumarins would be oxidized to o-quinines in the presence of Ph₂SeO. The oxygen atom at C-8 was readily attacked by double bond of phenylpropenes to furnish natural coumarinolignoids (1, 2, 4 and 5).

Pan *et al.*⁴² proposed the first enantioselective synthesis of daphneticin **4** and its regioisomers **29** by using convergent strategy. 7-Hydroxycoumarin was converted into 8-acetoxy-7-hydroxycoumarin in the first step. Several other steps produced 2, 3-expoxy-1-(4-benzyloxy-3, 5-dimethoxyphenyl) propanol, that reacted further by Mitsunobu reaction for the inversion of configuration and furnished **4**. Similar approach was adopted for the synthesis of regioisomer **29** by using 7-benzyloxy-8-hydroxycoumarin (**Scheme-VI**). Coumarinoli-

gnoids have paramount importance in pharmaceutics due to various biological activities summarized in Table-6.

Conclusion

This review article invites the researchers to explore the diverse method of synthesis other than oxidative coupling related to this rare natural product class. These methods should be environment friendly and more reproducible in outcome. Because of having varied biological activities, its some known and unknown derivatives may grasp the attention of scientists to step forward for new directions.

ACKNOWLEDGEMENTS

The authors are thankful to Ms. Ghazala Yaqub and Ms. Mehwish Iqbal for their valuable technical advices during the preparation of this review article.

REFERENCES

- A. Chatterjee, P.C. Das, P.C. Joshi and S. Mandal, J. Indian Chem. Soc., 71, 475 (1994).
- 2. R. Hansel, J. Schulz and A. Pelter, Chem. Ber., 108, 1482 (1975).
- J.F.J. Castelao, O.R. Gottlieb, R.A. de. Lima, A.L. Mesquita, H.E. Gottlieb and E. Wenkert, *Phytochemistry*, 16, 735 (1977).
- H. Nielsen and P. Arends, *Phytochemistry*, 17, 2040 (1978).
- A.B. Ray, S.K. Chattopadhyay, C. Konno and H. Hikino, *Tetrahedron Lett.*, 21, 4477 (1980).
- 6. A.B. Ray and S.K. Chattopadhyay, *Heterocycles*, 19, 19 (1982).
- R. Vanhaelen-Fastre, L. Luyengi, M. Vanhaelen, J.P. Declercq and M.V. Meerssche, *Phytochemistry*, 26, 317 (1987).
- 8. H. Tanaka, I. Kato, K. Ichino and K. Ito, J. Nat. Prod., 49, 366 (1986).
- M. Arisawa, S.S. Handa, D.D. Mcpherson, D.C. Lankin, G.A. Cordell, H.H.S. Fong and N.R. Farnsworth, *J. Nat. Prod.*, 47, 300 (1984).
- M. Mizuno, H. Kojima, T. Tanaka, M. Iinuma, R. Kimura, M. Zhi-da and H. Murata, *Phytochemistry*, 26, 2071 (1987).
- 11. E.X. Almeida, L.M. Conserva and R.P.L. Lemos, *Biochem. Sys. Ecol.*, **30**, 685 (2002).
- B. Das, A. Kashinatham, B. Venkataiah, K.V.N.S. Srinivas, G. Mahender and M.R. Reddy, *Biochem. Sys. Ecol.*, **31**, 1189 (2003).
- M.D.G.B. Zoghbi, N.F. Roque and O.R. Gottlieb, *Phytochemistry*, 20, 180 (1981).
- 14. M.R. Parthasarathy and K.P. Saradhi, Phytochemistry, 23, 867 (1984).
- 15. B. Das and B. Venkataiah, Biochem. Sys. Ecol., 29, 213 (2001).
- 16. Z. Lin-gen, O. Seligmann and H. Wagner, *Phytochemistry*, **22**, 617 (1983).
- F. Cottiglia, L. Bonsignore, G. Loy, D. Garau, C. Floris and M. Casu, Magn. Reson. Chem., 40, 551 (2002).
- B. Proska, D. Uhrin, S. Narantuyaa and D. Batsuren, *Pharmazie*, **45**, 804 (1990); S. Mandal, P.C. Das, P.C. Joshi and A. Chatterjee, *Indian J. Chem.*, **30B**, 712 (1991); P.C. Das, P.C. Joshi, S. Mandal and A. Chatterjee, *Indian J. Chem.*, **31B**, 342 (1992); A. Chatterjee, P.C. Das, P.C. Joshi and S. Mandal, *J. Indian Chem. Soc.*, **71**, 475 (1994).
- 19. L.J. Lin and G.A. Cordell, J. Chem. Soc., Chem. Commun., 160 (1984).
- A.B. Ray, S.K. Chattopadhyay and S. Kumar, *Tetrahedron*, 41, 209 (1985).
- T. Shamsuddin, W. Rahman, S.A. Khan, K.M. Shamsuddin and J.P. Kintzinger, *Phytochemistry*, 27, 1908 (1988).

- B.I. Fozdar, T. Shamsuddin, S.A. Khan, K.M. Shamsuddin and J.P. Kintzinger, *Phytochemistry*, 28, 2459 (1989).
- N. Ullah, S. Ahmad, P. Muhammad, Z. Ahmad, H.R. Nawaz and A. Malik, *Phytochemistry*, **51**, 103 (1999).
- 24. B. Das, A. Kashinatham and B. Venkataiah, *Nat. Prod. Lett.*, **13**, 293 (1999).
- 25. X.F. Cheng and Z.L. Chen, Fitoterapia, 71, 341 (2000).
- K. Iqbal, I. Anis, N. Mukhtar, A. Malik, N. Fatima and M.I. Chaudhary, *Heterocycles*, **60**, 151 (2003).
- V.U. Ahmad, F. Ullah, J. Hussain, U. Farooq, M. Zunair, M.T.H. Khan and M.I. Choudhary, *Chem. Pharm. Bull.*, **52**, 1458 (2004).
- Y.C. Chen, M.J. Cheng, S.J. Lee, A.K. Dixit, T. Ishikawa, I.L. Tsai and I.S. Chen, *Helv. Chim. Acta*, 87, 2805 (2004).
- A. Magalhaes, M.D.G.B. Zoghbi and A.C. Siani, *Nat. Prod. Res.*, 20, 43 (2006).
- 30. J.F. Xu, Z.M. Feng, J. Liu and P.C. Zhang, Chem. Biodiv., 5, 591 (2008).
- S. Michalet, L.P. Fattaccioli, C. Beney, P. Cegiela, C. Bayet, G. Cartier, D. Noungoue-Tchamo, E. Tsamo, A. Mariotte and M.G. Dijoux-Franca, *Helv. Chim. Acta*, 91, 1106 (2008).
- 32. Z. Ma, X. Zhang, L. Cheng and P. Zhang, Fitoterapia, 80, 320 (2009).
- N. Ahmad, F. Zeb, I. Ahmad and F. Wang, *Bioorg. Med. Chem. Lett.*, 19, 3521 (2009).
- 34. A. Arnoldi, A. Arnone and L. Merlini, Heterocycles, 22, 1537 (1984).
- 35. H. Tanaka, I. Kato and K. Ito, Chem. Pharm. Bull., 33, 3218 (1985).
- 36. L.-J. Lin and G.A. Cordell, J. Chem. Soc., Chem. Commun., 377 (1986).
- 37. H. Tanaka, I. Kato and K. Ito, Chem. Pharm. Bull., 34, 628 (1986).
- 38. H. Tanaka, M. Ishihara, K. Ichino and K. Ito, Heterocycles, 26, 3115 (1987).
- H. Tanaka, M. Ishihara, K. Ichino and K. Ito, *Chem. Pharm. Bull.*, 36, 1738 (1988).
- H. Tanaka, M. Ishihara, K. Ichino and K. Ito, *Chem. Pharm. Bull.*, 36, 3833 (1988).
- 41. H. Tanaka, M. Ishihara, K. Ichino and K. Ito, *Heterocycles*, **27**, 2651 (1988).
- X. Ren, X. Chen, K. Peng, X. Xie, Y. Xia and X. Pan, *Tetrahedron: Asymm.*, 13, 1799 (2002).
- S.P.S. Khanuja, A. Pal, S.K. Chattopadhyay, M.P. Darokar, R.P. Patel, A.K. Gupta, A.S. Negi, T. Kaur, S. Tandon, A.P. Kahol and A. Garg, US Patent 0258989 (2007).
- 44. V. A Kurkin, Chem. Nat. Compd., 39, 123 (2003).