

Synthesis and Luminescent Properties of YPO4:Eu³⁺ Cornflakes Self-Assembled by Nanocrystals[†]

CHANGHE LV, LINYUN ZHANG, HANGMIN GUAN* and Dechun Zhu

Department of Chemistry and Materials Engineering, Hefei University, Hefei 230022, P.R. China

*Corresponding author: E-mail: guan@hfuu.edu.cn

AJC-11338

A large-scale novel YPO₄:Eu³⁺ cornflakes self-assembled by nanocrystals were synthesized by a facile hydrothermal method. X-Ray diffraction results show that the cornflakes are pure tetragonal structure. Transmission electron microscopy and selected area electron diffraction studies indicate that the YPO₄:Eu³⁺ cornflakes are polycrystalline structure with a narrow size distribution. Photoluminescence spectra results demonstrate that the YPO₄:Eu³⁺ cornflakes have two strong ${}^5D_0/{}^7F_1$ (590 nm) and ${}^5D_0/{}^7F_2$ (616 nm) transition peaks corresponding to orange-red and red colour, respectively.

Key Words: Rare earth, Nanomaterials, Hydrothermal, Self-assembly.

INTRODUCTION

In the past few years, all kinds of self-assembly hierarchical structure which the basic building blocks have specific morphology and novel properties have attracted considerable interest for their potential technology applications¹. Though much progress has been made in the self-assembly of building blocks such as metals, semiconductors, copolymers, organicinorganic hybrid materials and biomaterials^{2,3}, it is still a challenge for material scientists to achieve novel hierarchical self-assembly of some functional materials.

As an important group of inorganic materials with unique optical and electronic properties, nano and submicroscale rare earth orthophosphates (RePO₄) materials have been extensively studied⁴. Among different kinds of rare earth orthophosphates, YPO₄ crystallizes is physically robust and chemically stable for activator ions and has drawn much attention of the researchers. Partial substitution of Re³⁺ for Y³⁺ in YPO₄ is of particular interest in the production of luminescent materials and YPO₄: Eu³⁺ is widely used in colour television, the cathode ray tube and the high-pressure mercury lamp etc.⁵. Compared to a lot of research efforts on constructing other lanthanide orthophosphates hierarchical structures, the fabrication about YPO₄ hierarchical structures is still limited. To the best of our knowledge, only Yang *et al.*⁶ reported the synthesis of YPO₄:Eu³⁺ olivary architectures composed of nanoflakes under three-step hydrothermal conditions. Hence, the fabrication of YPO₄ novel hierarchical structure remains a challenging issue faced by synthetic inorganic chemists.

Herein, we report the synthesis and luminescent properties of YPO₄:Eu³⁺ cornflakes self-assembled by nanocrystals under facile hydrothermal conditions.

EXPERIMENTAL

All of the chemicals of analytic grade were purchased from Beijing Chemical Corporation and used as received without further purification. In a typical synthesis. Firstly, 3 mL 0.001 mol/mL NaF solution was added into 40 mL a mixed solution of $Y(NO_3)_3$ and $Eu(NO_3)_3$ under stirring for 0.5 h. Then 1 mL of 0.001 mol/mL Na₅P₃O₁₀ solution was slowly dropped to the above solution under vigorously stirring. After stirred for 0.5 h, the milky colloidal solution was obtained and poured into several Teflon-lined stainless steel autoclaves and then heated at 150 °C for 5 h. After the autoclave was naturally cooled down to the room-temperature, the precipitates were collected by centrifugation and washed several times with distilled water and absolute ethanol and then dried at 60 °C for 8 h.

RESULTS AND DISCUSSION

Phase identification of YPO_4:Eu³⁺ cornflakes: Fig. 1 shows the XRD patterns of YPO_4 :Eu³⁺ cornflakes prepared by self-assembly route. The results indicate that all these samples have a single tetragonal xenotime structure with space group of L4₁/amd. Compared with the non-doped YPO₄ given in No. 84-0355 of JCPDS data files, the XRD pattern of Eu³⁺-doped YPO₄ obtained in this work shows a slight shift of diffraction peaks for the large difference in the radius of Y³⁺ and Eu³⁺.

†Presented to The 5th Korea-China International Conference on Multi-Functional Materials and Application.

Fig. 1. XRD pattern for the YPO4:Eu³⁺ cornflakes

Morphology of YPO₄:Eu³⁺ cornflakes: The morphologies of YPO₄:Eu³⁺ and YPO₄ powders as prepared are shown in Fig. 2a-b, respectively. The morphologies of YPO₄:Eu³⁺ as prepared is very like cornflakes shape consisting of nanoparticles. The size of the product distributes in the 100-200 nm range. From the insert in Fig. 2b, the strong diffraction rings of cornflakes are observed and can be well indexed to a tetragonal-phase structure, which is in good consonant with the results of XRD.

Fig. 2. SEM image (a), TEM image and SEAD pattern (b) of YPO₄:Eu³⁺ cronflakes

Photoluminescent properties of YPO₄:Eu³⁺ cornflakes: Fig. 3a shows the emission spectrum of the Eu³⁺-doped YPO₄ cornflakes. It can be seen that the Eu³⁺-doped cornflakes show two main emission bands with one centered at 590 nm (resulted from the electron transition from ⁵D₀ to ⁷F₁ levels of Eu³⁺) and the other at 616 nm (produced by the electron transition from ⁵D₀ to ⁷F₂ levels of Eu³⁺). Fig. 3b shows the excitation spectrum of the Eu³⁺-doped YPO₄ cornflakes. The excitation spectrum consisting of a strong broad band with a maximum at 230 nm originates from the excitation of the oxygen-to-europium charge transfer band (CTB). The other weak lines in the longer wavelength region extending from 280-500 nm are assigned to the direct excitation of the Eu³⁺ ground state into higher levels of the 4*f*-manifold such as ⁷F₀/⁵L₆ at 395 nm.

Fig. 3. Excitation spectra (a) and emission spectra (b) of the YPO₄:Eu³⁺ cornflakes

Conclusion

A large-scale novel YPO₄: Eu³⁺ cornflakes self-assembled by nanocrystals have been synthesized successfully under a facile hydrothermal condition. The luminescent property indicates that the YPO₄:Eu³⁺ architectures possess 2 lines for the ⁵D₀/⁷F₁ transitions and 2 lines for the ⁵D₀/⁷F₂ transitions, which are coincident with crystal field analysis and selection rules. The obtained architectures may have potential applications in the fields of optoelectronic devices.

ACKNOWLEDGEMENTS

This work is financially supported by the Yong Scientists Foundation of Anhui Education of China (Grant No. QN06012).

REFERENCES

- 1. G.M. Whitesides, J.P. Mathias and C.T. Seto, Science, 254, 1312 (1991).
- 2. G. Kaltenpoth, M. Himmelhaus, L. Slansky, F. Caruso and M. Grunze, *Adv. Mater.*, **15**, 1113 (2003).
- 3. N. Wang, D.S. Li, J. Zhao, P. Zhang, Q.F. He, X.J. Ke and C. Li, *Synth. React. Inor. Met.-Org. Nano-Met. Chem.*, **40**, 762 (2010).
- 4. S. Mann and G.A. Ozin, Nature, 382, 313 (1996).
- 5. M.N. Luwang, R.S. Ningthoujam, S.K. Srivastava and R.K. Vatsa, J. Am. Chem. Soc., 133, 2998 (2011).
- M. Yang, H.P. You, N. Guo, Y.J. Huang, Y.H. Zheng and H.J. Zhang, Cryst. Eng. Commun., 12, 4141 (2011).