

Fabrication of Superhydrophobic Surfaces of TiO₂ Coatings Modified with 1-Octadecanethiol[†]

CHUYANG XU^{1,*}, YANFEN WANG¹, BENXIA LI¹ and RONGCHUN NIE²

¹School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan 232001, Anhui Province, P.R. China ²School of Chemical Engineering, Anhui University of Science & Technology, Huainan 232001, Anhui Province, P.R. China

*Corresponding author: E-mail: rchnie@aust.edu.cn

AJC-11335

Nanoscaled rough surface modified by low-surface-energy materials has been widely used for preparation of superhydrophobic materials. In the present work, a superhydrophobic TiO₂ micro/nanostructured coating modified with 1-octadecanethiol was fabricated by a facile dip-coating process. As hydrophobization treatment by 1-octadecanethiol, the TiO₂ surface changed from hydrophilic (36°) to superhydrophobic (151°), which could be attributed to the synergistic effect of the improved roughness of TiO₂ and the formation of self-assembled monolayer with low surface energy.

Key Words: TiO₂, Superhydrophobic, 1-Octadecanethiol, Dip-coating process.

INTRODUCTION

Superhydrophobic surfaces, with a water contact angle more than 150°, have attracted great interest for both fundamental research and practical applications¹. Conventionally, superhydrophobic surfaces have been produced mainly in two ways². One is to create appropriate rough structure on hydrophobic substrates, in which research methods used mainly include chemical vapor deposition, template synthesis, laser etching, self-assembly, sol-gel method and other methods. The other is to modify a rough surface by low-surface-energy materials. The low-surface-energy materials commonly used are fluoride alkyl silane, fluorine polymer and wax. As an important inorganic functional material, titanium dioxide (TiO₂) possesses various kinds of applications in the fields of sensors, electronic components, solar battery and self-cleaning materials due to its low cost and unique properties³. Herein, the TiO₂ micro/nanostructured aggregate was successfully obtained by hydrothermal reaction and then the 1-octadecanethiol (ODT) with low surface energy was used for hydrophobization treatment. The surface showed good superhydrophobic property and stability.

EXPERIMENTAL

The micro/nanostructured TiO_2 were synthesized by the method of Li *et al.*⁴. The synthesis process is as follows: potassium titanium oxalate (2 mol) was dissolved in 20 mL of

distilled water, followed by the addition of 30 % H₂O₂ (15 mL) and 37 % HCl (1 mL) under stirring. The mixed solution was transferred to a sealed 50 mL Teflon-lined autoclave, heated at 150 °C for 8 h and then cooled to room temperature naturally. The white precipitate was collected, washed with distilled water and absolute alcohol several times and then dried in a vacuum at 80 °C for 12 h. The obtained TiO₂ samples were dispersed in an ethanol solution of 1-octadecanethiol with constant stirring for 2 h at 75 °C to complete a self-assembly process. The suspension was then used to fabricate coatings by dipcoating onto glass slides eroded by acids and dried in an oven at 80 °C until the ethanol evaporated completely.

The X-ray diffraction were recorded with Philips X'Pert Pro Super diffract meter with CuK_{α} radiation ($\lambda = 1.54178$ Å). The field emission scanning electron microscopy (FESEM) was performed on JEOL JSM-6700F. The contact angles of the coating were measured with a contact angle meter C20 (Kono, America).

RESULTS AND DISCUSSION

Fig. 1 shows the XRD pattern of the as-obtained TiO_2 sample. All the observed peaks of the pattern can be indexed to a pure tetragonal rutile phase (JCPDS card, 21-1276) with lattice constants = 4.593 Å and c=2.958 Å. No peak for other types was observed, showing the high purity and well crystallinity of the samples.

†Presented to The 5th Korea-China International Conference on Multi-Functional Materials and Application.

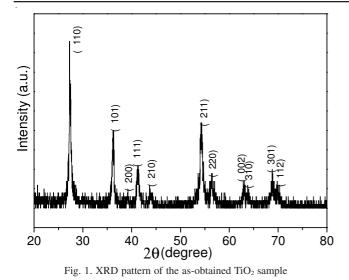


Fig. 2 shows SEM images of the TiO_2 sample at different magnifications. From Fig. 2a, it is observed that the products exhibit rough structure aggregated by a large number of nanoparticles. A magnified SEM image showing the close observation of the aggregate is presented in Fig. 2b. It reveals that these aggregate are constructed from many short TiO_2 nanorods and irregular TiO_2 nanoparticles with size in the range of 100-200 nm and they aggregate with each other to form the microscale hierarchical structure.

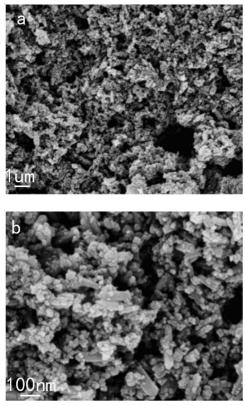


Fig. 2. SEM images of the untreated TiO₂ coating at different magnifications

Fig. 3 shows SEM images of hydrophobization-treated TiO_2 coating with 1-octadecanethiol. From the images, we can see that the surface morphology of the samples has been changed after the modification with 1-octadecanethiol, indicating that

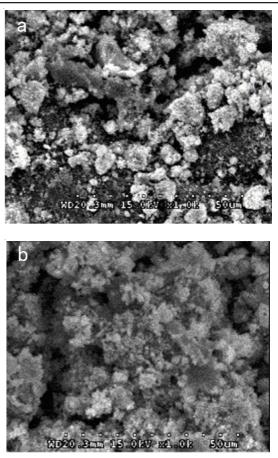


Fig. 3. SEM images of the hydrophobization-treated TiO₂ coating

a self-assembled monolayer was formed on the TiO_2 surface. More pores are engendered in the flocculence-like microstructures, which may improve the surface roughness or trap more air.

The surface wettability of the as-prepared coatings has been evaluated by the water contact angle measurement. As shown in Fig. 4, the contact angle of untreated TiO₂ coating was measured to be 36°, showing its hydrophilic nature. However, after the hydrophobization treatment with low-surfaceenergy 1-octadecanethiol, the contact angle of the coating was measured to be 151°, exhibiting the good superhydrophobicity. Moreover, it is worthwhile to note that the water droplets are extremely unstable on the surface of the superhydrophobic TiO₂ coating. Even the surface remains horizontal, the water droplets also roll down easily, resulting in the contact angle hard to measure. It indicates the surface possess a very small contact hysteresis.

36°

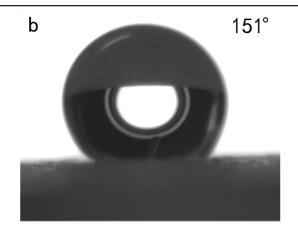


Fig. 4. A water droplet on (a) pure TiO_2 coating (b) modified TiO_2 coating

As we know, surface roughness and chemical composition are determinant factors of the surface wetting property. In our reactive system, the micro/nanostructured TiO_2 were obtained and subsequently modified with 1-octadecanethiol. On one hand, the micro/nano hierarchical structure of TiO_2 could provide the structural groundwork for the superhydrophobicity. On the other hand, the surface of TiO_2 nanoparticles were covered with a self-assembled 1-octadecanethiol monolayer, which can effectively decrease the surface free energy and increase the hydrophobicity. Therefore, both the structure effect of the TiO₂ and the formation with self-assembled monolayer with low surface energy make the coating superhydrophobicity.

Conclusion

A simple method of fabricating super hydrophobic surface of 1-octadecanethiol modified TiO_2 micro/nanostructure is presented. Combining the surface topography provided by the TiO_2 micro/nanostructure and the low-surface-energy layer formed by 1-octadecanethiol adsorption render the coating superhydrophobicity. The superhydrophobic coating may be applicable for multiple fields such as optoelectronic industries and biochemistry field.

ACKNOWLEDGEMENTS

This work was financially supported by the National Natural Science Foundation of China (21001003).

REFERENCES

- 1. D. Han and A.J. Steckl, Langmuir, 25, 9454 (2009).
- 2. M.L. Ma and R.M. Hill, Curr. Opin. Colloid Interf. Sci., 11, 193 (2006).
- 3. X.H. Xua, Z.Z. Zhang and W.M. Liu, *Colloid. Surf. A: Physicochem. Eng. Asp.*, **341**, 21 (2009).
- 4. X.X. Li, Y.J. Xiong, Z.G. Li and Y. Xie, Inorg. Chem., 45, 3493 (2006).