
INTRODUCTION

In living cells, the cytoplasmic environment is quite

different from that usually encountered in vitro. Intracellular

environments are highly crowded due to the presence of various

bio-macromolecules, which may occupy a large volume

fraction of the cell, typically ranging from 10 to 40 % of the

total cellular volume1,2. Crowding leads to various relevant

effects, such as thermodynamic and kinetic effects, on the

properties of reagents. For example, the crowding decreases

the diffusion of protein and enhances relevant protein associ-

ation3, self-association of monomers4 and increases the rate of

folding and refolding5.

In biochemistry, the Michaelis-Menten (Michaelis-

Menten) scheme of enzyme kinetics is a paradigmatic model.

It consists of a set of three elementary chemical reactions: A

substrate, S, binds reversibly to an enzyme, E, forming enzyme-

substrate complex, C, that undergoes unimolecular decomposi-

tion to form a product, P and the original enzyme:

E + S
k1

k-1
C k2 E + P (1)

where, ki is the rate coefficient associated with the elementary

step i. The Michaelis-Menten reaction kinetics is strongly influ-

enced by diffusion of reactants. The phenomena are dramatically

changed when the media become crowded. In low-dimensional

and fractal systems such as biological membrane, diffusion is

not a perfectly mixing process2,6-9. The crowded system shows

anomalous sub-diffusion, which is characterized by mean
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displacement of the molecule < R2(t) > ∝ tα with α < 1.0.

Consequently, fractal kinetics displays k1(t) = k1(0)th with h

fractal exponent and pronounced substrate-product segregation6.

However, the kinetics of Michaelis-Menten reaction in crowding

three-dimensional (3D) system embedded in enzyme-network

which displays cooperative reaction are still open.

Intracellular environments is very complex. The size of

substrate molecules is distinct in different system. Even in one

cell, different species of substrate molecules have distinct size.

The Michaelis-Menten reaction kinetics may be influenced

by the size of substrate molecules. For example, the Michaelis

constant KM value of EcoRI depends sensitively on the size of

the substrate10. Small substrate molecules which are generally

treated as point particles in many documented studies11-14 can

diffuse into any free space. The main influences of crowded

environment is blocking its free diffusion. However, some

substrates have comparable sizes to the obstacles. In this case,

the diffusion of substrates with big size is limited by the

crowded background greatly. Due to the volume exclusion

effect, it can not enter into space between obstacles with size

smaller than itself. Consequently, the crowded obstacles may

compartmentalize the big substrates, which not only decreases

the diffusion coefficient but also results in many other effects,

such as reaction noise from low copy number of molecules in

compartments15,16, increase of the rate of re-collision17 and

soon. Consider system consists of enzyme network embedded

in crowded environment, the kinetics of Michaelis-Menten

reaction will be greatly enriched.



EXPERIMENTAL

Simulation model: Slow diffusion rates in combination

with complicated environments make classical mean-field

description by mass law is invalid, which make it necessary to

make use of stochastic model in vivo biochemistry. Many

methods have been employed to simulate reversible reaction

in this field, including Brownian dynamics11,17, Monte Carlo

simulation6, molecular dynamics (MD)18,19 and etc. In our

model, a particle-based stochastic model based on a mesoscopic

hybrid molecular dynamics-multiparticle collision (MD-MPC)

dynamics scheme is put forward to simulate Michaelis-Menten

kinetics.

We consider a 3D cubic system with volume V employing

periodic boundary condition. In the initial state, the system

contains four species of molecules, i.e. substrates (with number

NS, mass mS and radius rS), obstacles (with number NO, mass

mO and radius rO), enzymes (with number NE, mass mE and

radius rE) and point-likes solvent molecules (with number NM

and mass mM). Their initial positions are randomly distributed

with the condition that they do not overlap on to each other

and velocities obey Maxwellian distribution. The enzymes and

enzyme-substrate complexes interact with each other and with

the obstacle, solvent, substrate and product molecules through

repulsive Lennard-Jones (LJ) potentials.
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where, rc = 21/6rE is a cut-off distance. The time evolution of

the non-reaction process is carried out using a mesoscopic

hybrid molecular dynamics-multiparticle collision (MD-MPC)

dynamics scheme3, which consists of a streaming step and a

collision step. In the streaming step (molecular dynamics step),

within a time interval τMD, the motions of all particles are

governed by Newtons equations of motion. In the collision

step (MPC step), within a time interval τMPC, multiparticle

collisions occur among the solvent, product and substrate

molecules. To carry out multiparticle collision, the system is

divided into many cubic cells with size a0. Collisions occur

independently in each cell. The post-collision velocity v'i of

each particle i in a cell I, relative to the center-of-mass velocity

Vcm =∑ = i
IN

1i V , where NI is the instantaneous number of particles

in cell I, is rotated with respect to a randomly chosen unit axis

by a fixed angle θ,

v'i = Vcm + ωI(θ)(vi -VI) (3)

where, ωI(θ) is a random rotation matrix operator. Since the

hybrid dynamics is microcanonical, preserving mass, momentum

and energy conservation, phase space volumes, all important

characteristics of full molecular dynamics. In recent simulation,

MPC algorithms has widely applied to study colloid and polymer

dynamics20, the behaviour of vesicles and cells in hydrodynamic

flows and the dynamics of viscoelastic fluids21 and chemical

propelled nanomotor22.

Once n substrate molecules diffuse into the reaction zone

(r < rC) of enzyme in one MD step, one substrate will randomly

be picked up to participate the reaction E + S → C with prob-

ability pR = 1- (1-p)n with p the probability of reaction of a

substrate-enzyme pair. Once a complex is formed at time t,

we assume the disassociation takes place in the time t + 1/(k2

+ k0
-1) ln(1/R1) based on Gillespie's method23, where R1 is a

random number. If R2 < k2/(k2 + k0
-1) (R2 is another random

number), the reaction C → E + P will occur, otherwise the

reaction is C → E + S.

In the simulation of Michaelis-Menten reaction mentioned

above, we make use of a rule conserving the mass, momentum

and energy of the system24. For the reaction E + S → C, the

formed velocity of complex can be obtained based on mass

and momentum conservation,

vC = (mEvE + mSvS)/mC (4)

where, mC = mE + mS is the mass of the complex. It is impossible

to conserve energy without any other molecules participating

in this process. To avoid this point, it is necessary to flow the

surplus energy into the solution, which may act as heat bath.

Two solvent molecules near the reacting enzyme are randomly

picked up to receive the surplus energy. Consider that these

two solvent molecules should also satisfy momentum conser-

vation, the post velocities of these two solvent molecules are:
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Here m vMr = vM1 - vM2 is the relative velocity of the two solvent

molecules, 1n̂ is a randomly chosen unit vector, vr = vE - vS,

rES = rE - rS and µES = mEmS/mE + mS. For the reaction C → E +

S(orP), the substrate (or product) is released outside of the

reaction surface of enzyme and get energy from the solution.

Again, two solvent particles near the decomposing complex

are picked up to participate this process. The post-reaction

velocities of solvent particles are taken to be

2,1j),vv(
2

1
V 2M1MMj =+=′ (7)

For the enzyme and substrate molecules, their post-reaction

velocities are
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where, SEr̂ is a unit vector pointing from E to S. Since the

velocity of solvent particles obey Maxwellian distribution, it

is checked that the post velocity of released substrates (or product)

also shows Maxwellian distribution characterized by system

temperature. Thus, reactive collisions are constructed to conserve

mass, momentum and energy and account for energy trans-

fers to and from the surrounding solvent molecules that serve

as heat bath. Also, the rule ensure that the reversible reaction

steps satisfy detailed balance. The detail description of this

rule has been introduced in reported work24.

All quantities are reported in dimensionless LJ units in

this paper. Distances and energy are measured in units of rE

and∈ , temperature in units of∈ /kB and time in units of
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∈/mrE
. The simulations were carried out on systems conta-

ining V = L3 = 303 MPC cells with unit volume. The rotation

operators in the MPC dynamics were chosen to describe rota-

tions by θ = 90º about randomly chosen axes. The temperature

was determined from the average kinetic energy. We set NE =

100 and 
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=φ (small volume fraction of enzymes

is neglected). The radius of enzyme, complex and obstacle is

fixed to be 1.0. The mass of enzyme and obstacle is
3

r4 3

E
M

π
ρ .

The temperature of system is set to be KBT = 0.2. In order to

focus on the influences of substrate diffusion on crowded

Michaelis-Menten kinetic, we set the mass of substrate to be 1

(identical with solvent particles) while its radius is changed

so that it can diffuse fast to explore the environment back-

ground. The MD time step used to integrate Newtons equations

of motion with the velocity Verlet algorithm is τMD = 0.001,

while the multiparticle collision time is 1.0.

The conservations of mass, momentum and energy in the

system are ensured since they are satisfied both in non-reaction

dynamics and in reaction kinetics. An example displaying the

evolution of energy is presented in Fig. 1, where one can find

that the fluctuation is very small. Thus, important general

features of full molecular dynamics are preserved in this

mesoscopic model, which make the hydrodynamic interactions

properly accounted for and additional assumptions about

friction coefficients or random forces not required.

Fig. 1. Evolution of energy in Michaelis-Menten system with volume V =

603 containing 100 enzymes, 3000 substrates, 100 obstacles and

1.728 × 106 solvent molecules. The reaction parameter is: k2 = 0.5,

k-1 = 0.01

RESULTS AND DISCUSSION

Firstly, in order to investigate the Michaelis-Menten

kinetics when the system is crowded by obstacles, we compute

the dependence of diffusion coefficient on the volume fraction

of obstacles. It is shown in Fig. 2(a) that the value of D(φ)

decreases with increasing volume fraction when the substrates

are treated as point-like particles. When the value of φ is

increased to 0.3, the diffusion coefficient is decreased about

40 %. In MPC, an approximate analytical expression for the

diffusion coefficient can be expressed by expression25
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From this expression, one can get D = 0.28 if obstacles

are absent which is exactly the value we get from simulation.

Since the obstacles are distributed randomly, the theoretical

expression of D(φ) can be obtained from evolution equation

for the density field26.

2/1
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We compare the dependence from this function with that

from simulation in Fig. 1(a). One can see they show perfect

agreement.

The diffusion coefficient is plotted from mean square

displacement (MSD) < R2(t) >. In Fig. 2(b), we show < R2(t) >

with different radius of substrate molecules. In the short time,

the substrates show ballistic motion with fast increase of <

R2(t) >. Then, it undergoes different dynamics regime depending

on the radius of substrate. For small rS, it quickly enter into

normal diffusion regime showing < R2(t) > = 6Dtα with α =

1.0. Small substrate can explore almost any unoccupied volume

between obstacles while big substrate can not diffuse into space

smaller than its size. Thus, for big rS, it shows an subnormal

diffusion regime < R2(t) > ∝ tα with α < 1.0 after the ballistic

regime. From the series of curves, one can find this point.

Following this regime in the long time, the diffusion enters

into normal regime again. In low-dimensional system, fractal

structure from crowded environment may result in obvious

sub-diffusion6. We present the diffusion coefficient with rS =

1.0 in Fig. 2(a). It is shown that the decreases of D(φ) is

pronounced as φ is increased, displaying strong nonlinearity.

Beyond φ = 0.3, it is very difficult for the substrate to diffuse

in the crowded background. Two aspects from crowded environ-

ment, namely, increase of volume fraction of obstacles and

consequent decrease of spaces for big substrate to explore

among obstacles, leads to the dramatic decrease in D(φ). The

increase of rS distinctly decreases the diffusion coefficient for

the latter reason, which is show in Fig. 2(c).

System consisting of many enzymes forms a reaction

network, which shows cooperative behaviour. Thus, it may

exhibit different kinetic behaviour from that in system with

only one enzyme. When a complex is formed in Michaelis-

Menten reaction, it may disassociate into enzyme and a subs-

trate again or generating a product. The released substrate has

two fates: one is that it associates with the initial enzyme again,

which is called \self-rebind; in contrast to one enzyme system,

it may diffuse away from its initial enzyme and subsequently
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forms complex with other enzyme, which is call other-rebind.

It is sure that the increase of volume fraction of obstacle will

decrease the probability of first collision between enzyme and

substrate and other-rebind since the diffusion of substrate is

blocked by these obstacles. On the other hand, the crowed

environment compartmentalizes the system, which increases

the probability of self-rebind. The decrease of the first-collision

and\self-rebind accordingly decreases the reaction rate while

the\other-rebind increases it. Thus, whether the reaction rate

is increased or not depends on what effects play the dominative

role.

Fig. 2. (a) Dependence of diffusion coefficient D on obstacle volume

fraction φ with rs = 0 (circles) and rs = 1.0  (squares). The solid line

is plotted from eqn. (9); (b) Mean squared displacement < R2 > of

the substrate is plotted as a function of time with different rS; (c)

Diffusion coefficient as a function of rS with φ = 0.2

In Fig. 3(a,b), the dependence of rebind probability on

volume fraction of obstacle is presented. It is shown that the

probability of the self-rebind PS is increased with φ. The increase

is quite pronounced when the radius of substrate is big since

the compartmentalization is more obvious. For the same

causation, the other-rebind probability PO is decreased fast with

increasing of φ when the size of substrate is big. Thus, the

total probability of rebinding is not increased much. In recent

work, the system containing one enzyme is simulated by Brown

dynamics and analyzed based on Smoluchflowski theory17. In

this simulation, the size of enzyme, substrate and obstacle are

all identical, which is similar with our case with big substrate.

They reported that the reaction rate is decreased when the value

of φ is increased if reaction probability is 1.0. The probability

of reaction p in E + S → C is p = 1.0 in our simulation. The

great decrease of D(0.3) leads to predominating of first collision.

Thus, the reaction rate is decreased when φ is increased, which

is confirmed in Fig. 4(a), where the survival probability PL of

substrate is plotted. Our simulation is in accord with the

reported result17. If the probability of reaction E + S → C is

very small (0.001), the recollison predominates. Consequently,

it seems that the reaction rate as well as PS will increase with φ

quickly, especially in the case with big substrate. However,

consider the reaction network consisting of many enzymes,

the effect of substrates compartmentalization from crowded

obstacles also decrease the probability of other rebind PO [Fig.

3(b)] and the increase of total probability of recollision to

enzyme is small [Fig. 3(c)]. Therefore, the increase of reaction

rate with small p in enzyme-network is not easy to be obtained,

especially compared to system containing one enzyme. Our

direct simulation also confirms this point.

Fig. 3. Rebinding probability of released substrates with big size (rS = 1.0,

squares) and small size (rS = 0, circles) to enzymes. (a) To initial

enzymes (PS). (b) To other enzymes (PO). (c) Total probability (PT)

of rebinding. The reaction rate is k2 = 0.01 and k-1 = 0.5. The data is

plotted from 24 realization at t = 500

Different from the case with big size substrate, we find

the survival probability PL of substrate with small size decreases

as φ is increased, which is illustrated in Fig. 4(b). Thus, the

value of PL is also influenced by radius of substrate. With p =

1.0, the first collision determinated by diffusion coefficient

dominates the reaction E + S → C. However, compared to the

case with big substrate, it has been shown in Fig. 2(a) that the

3920  Wei et al. Asian J. Chem.
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decrease of diffusion of small substrate is not large. On the

other hand, strong deviation of substrate distribution from

uniformity appears as the global volume fraction of obstacles

increases. In Fig. 4(c), it is shown that the local density of

substrates near enzyme in crowded system with φ = 0.3 is

much higher than that with φ = 0. The increased first collision

resulted from high local density of substrate covers the decreased

first collision from the not-small diffusion coefficient. As a

consequence, the different PL dependence on substrate radius.

Fig. 4. Survival probability of substrate as a function of time for (a) rS = 0

(b) rS = 1.0 with different volume fraction of obstacle. (c) Relative

density of substrate molecules as a function of radial distance from

enzyme. ρsa is the averaged density of substrate in the bulk of the

system. The reaction rate is k2 = 0.8 and k-1 = 0.01

Due to the influence of diffusion effect of reactants, the

reaction rate coefficient k1(t) shows time dependent instead of

constant value. k1(t) can be defined by the rate law:

C21SE1
C )kk()t(k

dt

d
ρ+−ρρ=

ρ
− (11)

Then, the value of k1(t) can be obtained through calculat-

ing:

SE

1

dt/)t(d
)t(k

ρρ

γ
= (12)

where γ(t) related to k1 by:

∫ ρρ=γ
t

0
SE1 'dt)'t()'t()'t(k)t( (13)

is the total number of enzyme-substrate collisions that have

effectively given rise to complex formation6 after time t. In

Fig. 5, we plot the k1(t) with different volume fraction of

obstacle and size of substrate.

Fig. 5. Evolution of k1(t) with varying φ and rS. (a) rS = 0. The dotted line

and dashed line indicates φ = 0 and φ = 0.2, respectively. The solid

line shows theoretical result from eqn. 16. (b) rS = 0.5, φ = 0.2

Firstly, we discuss the value of k1(0). We get k1(0) = 2.78

from simulation in Fig. 5 as rs = 0 and φ = 0. This value is

consistent with theoretical estimation k1(0) = 2.82 from the

function25.
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For the increase of obstacles leads to the density of the

substrate near the enzyme higher than that in the bulk of the

system, the k1(0) also shows φ dependence. In the calculation

from function (14), the value of ρS is the averaged density that

is smaller than the actual value near the enzymes, which make

k1(0) increased with φ. An example of k1(t) with φ = 0.2 is

shown in Fig. 5(a). We change the value of φ and plot the

corresponding value of k1(0) in the inset of Fig. 5(a). The fit

solid line indicates a relation.

k1(0,φ) = k1(0)(1 + aφb) (15)

with a = 1.8 and b = 1.2. This relation is also confirmed

by the case with rS = 0.5 and φ = 0.2 in Fig. 5(b), where, k1(0)

is about 7.6 while its value is 8.0 from function (14) by

replacing rc = 21/6rE with rc = 21/6(rE + rS).

The evolution of k1(t) in Michaelis-Menten reaction is

difficult to get from theoretical analysis. In order to show

qualitative information, we compare our simulation result with

theoretical result plotted from the reaction E + S → E + P26.
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This expression for k1(t) is obtained when the diffusion

equation is solved subject to the radiation boundary condition,

k1(0)ρS(r
_
EE, t) = 4πr_

E
2
ED r̂ . )t.(s Eσρ∇ , where ρS(r, t) is the

local substrate density at a distance r from the enzyme and

r̂ is unit radial vector. In fig. 5(a), one obvious result is that

the fall of k1(t) is slower in Michaelis-Menten reaction. It can

be rationalized by the different reaction kinetic. In reaction E

+ S → E + P, the S substrates continually becomes P product

as they encounter E with fast decrease of substrate density

near E. Consequently, gradient of substrate density near

enzyme is formed. However, substrates in Michaelis-Menten

should compete with each other to get the chance forming

complex. At one time, only one substrate can succeed in asso-

ciating with one enzyme and others are pushed back from the

occupied enzymes. It needs time to wait for the disassociation

of the complex again so that E + S → C can occur again,

which moderates the gradient near enzyme by diffusing of

substrate. Thus, the k1(t) in reaction E + S → E + P falls faster

and its value at the same time is smaller than that in Michaelis-

Menten. In terms of this discussion, it is clear that the decrease

of diffusion coefficient of substrate in Michaelis-Menten may

induces higher gradient and leads to faster decrease of k1(t).

One can find this point by comparing the curves with φ = 0

and φ = 0.2 in Fig. 5(a). Certainly, the increase of substrate

size greatly decreases the diffusion coefficient and results in

fast decreasing of k1(t), which can be seen in Fig. 5(b).

The k1(t) approaches24.

D1

D1
1

k)0(k

k)0(k
)(k

+
=∞ (17)

In the long time. We get k1(∞) = 1.86 (φ = 0) and k1(∞) =

1.61 (φ = 0.2), which is slight bigger than that from theoretical

function (17) where k1(∞) is 1.75 (φ = 0) and k1(∞) 1.59 (φ =

0.2) respectively. We attribute the slight increase to the coope-

rative reaction from the reaction network formed by many

enzymes possessing other rebind PO. To the case with rs = 0.5,

It is found that the simulated k1(1) is about 1.8 which is bigger

than the value 0.98 from the calculation (17). We attribute the

result to the obvious increase of probability of self rebind PS.

The first collision and other rebind PO are predominated by

diffusion which is characterized by D. These influences have

been taken into account in D, kD and then k1(∞). However, the

contribution of self rebind PS has not been consider in k1(∞)

(17). Thus, the calculated k1(∞) is smaller than the simulation

result.

Conclusion

In conclusion, we have studied the Michaelis-Menten

scheme of enzyme-network kinetics in crowded environment

through a particle-based stochastic model based on a

mesoscopic hybrid molecular dynamics-multiparticle collision

(MD-MPC) dynamics method. Nontrivial effects are observed

due to the compartmentalization of big substrate induced by

crowded obstacles and cooperative reaction from enzyme-

network. The simulated diffusion coefficient of point-like subs-

trate molecule is in accord with theoretical calculation when

volume fraction of obstacle is increased, while D of big subs-

trate shows strong nonlinearity. When the volume fraction of

obstacles increases, the self rebind and other rebind probability

of big substrate increases and decreases fast, respectively. The

survival probability of big substrate increases as volume fraction

of obstacles while small substrate shows opposite tendencies.

We studied the time dependent reaction rate k1(t) in three

regimes, that is k1(0), evolution of k1(t) and k1(∞). The results

are compared with theoretical results and discussed. We hope

our results can shed light on enzyme kinetics in complex

environment.
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