
INTRODUCTION

Ion-selective electrodes (ISEs) have widespread appli-

cations in many research and medical laboratories due to their

main advantages such as low expense, fast response, easy use

and non-destructive properties. In recent years, there has been

intensive interest in the field of all solid contact ion-selective

electrodes1-4 . The solid contact has been prepared by using a

mixture of graphite and epoxy resin in a suitable ratio. In this

type of electrodes, solid contact provides a suitable adherent

surface for the sensing membrane5,6. Employment of solid

contact as a conductive material between the sensing memb-

rane and metallic conductor gives extra properties to the ISEs

such as extended life-time, robustness, miniaturized construction

and low expense.

Mathematical relationship between the activity of a mea-

sured ion in a solution and the potential, which is measured

between the reference electrode and the ISE, is expressed by

the Nernst equation (eqn. 1).

Aaln
zF

RT
EE += θ

(1)

where E is the cell potential, Eθ is temperature-dependent

standard cell potential, R is ideal gas constant, F is faraday

constant, aA is activity of primary ion and z is ionic charge of

the primary ion. On the other hand, insufficient selectivity of

ISEs is one of the major problems in analytical applications.
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The existence of the interferents in the measurement media

affects the potentiometric response of the electrode. In the

presence of the foreign ions, potentiometric response of the

electrode can be expressed by Nikolskii equation given in eqn.

2 according to the IUPAC recommendations7.
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where aA is primary ion activity, aB is interferent activity, zA is

primary ion charge, zB is interferent activity and K(A,B)
pot is

selectivity coefficient. There are various calculation methods

to determine selectivity coefficients8. One of the problems is

that K(A,B)
pot was originally introduced with the empirical

Nikolskii equation, which is now known to be incorrect when

two ions of different charges significantly contribute to the

potential9 because, the size of the selectivity coefficients

changes depending on the ion charges and composition of the

solution. For the correct determination of the selectivity coeffi-

cients, all the ion charges and ion concentrations present in

the measurement media must be known exactly. In recent years,

utilization of potentiometric multi-sensor arrays combined with

various multivariate linear and non-linear models instead of

classical univariate models have been offered and widely used

for the more accurate potentiometric determination of the

target ions. In the literature, partial-least-squares (PLS)10-13 and

principle component regression (PCR)14-17 models were



employed as linear multivariate processing tools for the deter-

mination of various ionic substances by using potentiometric

sensor arrays and satisfactory results were obtained. Although

PLS and PCR are linear methods, they can be used for the

modeling of some specific non-linear data. If the form of the

non-linear relationship between the dependent and explanatory

data is known, a model can be linearized by taking the suitable

transform of the original data or adding higher order terms to

the regression equation. However, success of these approaches

in practical application is mainly limited because the exact

form of the non-linear relationship is not known a priori and

the number of calibration samples available is not sufficient

to fit a complex model with large number of higher order terms.

Artificial neural networks (ANNs) are known to be one

of the most powerful non-linear data processing techniques.

For linear systems, ANNs also perform to the same extent as

PCR or PLS18. There are many examples of the ANN configu-

rations which have been recently used combined with different

potentiometric sensor arrays to relate concentrations of the

species to the potentiometric signals19-23. Artificial neural

networks are employed to relate a set of independent input

variables (explanatory variables) with one or more dependent

output variables. Fig. 1 illustrates the general structure of an

ANN.

 Fig. 1. General structure of an artificial neural network

The nodes are connected together by weights. w'ij is the

weights for connecting nodes in the input layer to nodes in the

hidden layer and w''j is the weights for connecting the nodes

in the hidden layer to the nodes in the output layer. The nodes

in the hidden and output layers each perform two actions. The

first is to sum the weighted input signals received from the

input layer. The second is to take this sum and project it through

a transfer function to produce "activation". The utilized transfer

functions can be in different forms such as linear, sigmoid or

hyperbolic tangent function24. The relationship between the

output response ŷ  (the predicted) and the input variables xi in

an ANN model can be expressed as in the equation given below.
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1jo β+′Σ′′Σ+β′= == (3)

The transfer functions for the output and hidden nodes

are represented by fo and fh, respectively. β' and β are biases

and are calculated during the training processes of the network.

The weights and the biases are designated random values on

the first iteration and thus are adjustable. Each iteration involves

2 steps. At the first step, estimations of the dependent variable

are made by using the training set and then compared with the

true value. At the second step, the errors between the estimated

and the true values are used to regulate the weights. The

iterations are repeated until the errors have reached a pre-

defined low level.

NH4
+-selective electrodes available in the literature

generally has low selectivity, especially towards K+ (selectivity

coefficients for K+ are generally around 10 folds). In present

study, we aimed to determine NH4
+ more correctly together

with Na+ and K+ in aqueous model solutions by using various

ANN models. Therefore, a potentiometric sensor array com-

prising 5 electrodes was constituted. Three-level full factorial

design with three-factor was used for the experimental design

of the calibration set. Prediction powers of the constituted ANN

models were evaluated comparing the product of their root

mean square errors of calibration (RMSEC) and root mean

square errors of prediction (RMSEP) values.

EXPERIMENTAL

The following reagents were used for the preparation of

the sensing membranes: tetrahydrofuran (THF), high mole-

cular weight poly(vinyl chloride) (PVC), potassium tetrakis

(para-chlorophenyl)borate (KTpClPB), graphite and iono-

phores (Na+ ionophore X, K+ ionophore I, NH4
+ ionophore I,

monensin and dibenzo-18-crown-6) were purchased from

Fluka (Bucks, Switzerland). 2-Nitrophenyloctylether (NPOE),

dioctyl sebacate (DOS) and dibutyl phthalate (DBP) were used

as plasticizers and all were obtained from Fluka.

Epoxy (Macroplast Su 2227) and hardener (Desmodur

RFE), used in the preparation of conductive solid contact, were

purchased from Henkel (Istanbul, Turkey) and Bayer AG

(Darmstadt, Germany), respectively.

For the preparation of all the aqueous solutions throughout

the study, distilled deionized water with resistivity of 18.2 MΩ
was used. All cation solutions were prepared from the analytical

grade nitrate salts of the relevant cations.

Potentiometric measurements were recorded by using a

laboratory-made computer-controlled high-input impedance

multi-channel potentiometric system. The system had a home-

made software program. Throughout the measurements,

double-junction saturated calomel electrode (Gamry) was used

as reference electrode. For the calculations of the ANN model

parameters, SPSS Statistics 17.0 (SPSS Inc., USA) software

was used.

Construction of the ISE array: Sensor array used in the

present study was comprised of 5 electrodes based on all-solid

state technology. Three of them were selective for Na+, K+

and NH4
+. Two of them were non-specific electrodes. All of

the electrodes were prepared as described earlier6. A mixture

of conductive material consisting of 50 % (w/w) graphite, 35 %

(w/w) epoxy and 15 % (w/w) hardener was prepared by mixing

in sufficient THF. Then, the mixture was allowed to stand for

10-20 min in air. When the appropriate viscosity was attained,

a shielded copper wire was dipped into this mixture a few

times to obtain a uniform solid contact with coating thickness

of ca. 0.2 mm and then allowed to stand overnight in an oven

at 40 ºC. The membrane cocktails given in Table-1 were coated
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on the surface of the conductive material by dipping 4-5 times.

The electrodes were left to be dried overnight at laboratory

conditions. Finally, the dried PVC membrane electrodes were

conditioned by soaking into their 0.1 M main ion solutions

for at least 6 hours before use.

All the electrodes were inserted into the holes which were

opened circularly onto the inert polymer block. The reference

electrode was also inserted into the hole opened in the centre

of the polymer block and thus, the ISE array was constructed.

The schematic representation of the multi-sensor array and

the measurement system used in the present study were given

in Fig. 2.

Fig. 2. Schematic representation of the utilized measurement system

Preparation of the solutions: Full factorial designs mea-

sure response variables using every combination of the factor

levels. Therefore, the concentration levels of the calibration

samples were adjusted according to three-level full-factorial

design with three-factors (33 = 27). The concentrations of the

studied ions in the calibration set were changed in the range

of 10-2-10-4 M. Thirteen external test solutions were also

prepared for the validation of the calibrations. Ion compositions

of the test solutions were generated randomly in the ion concen-

trations range of the calibration set. Five of them had the same

ion composition and were prepared in the same way to test

whether the solution preparation processes were a significant

source of errors. Distributions of the ion contents of the cali-

bration and test set solutions were indicated as a three-dimen-

sional plot in Fig. 3. 10 mM tris-HCl at pH = 7.0 were used as

background in the preparation of all calibration and test set

solutions.

Procedure: The general measurement procedure was as

follows: The multi-sensor array was dipped into the solution

and the sensor potentials were recorded when the each electrode

potential was reached a stable potential. Next, the sensor array

was removed from the solution, washed with deionized water

and dried with smooth adsorbent paper. Then, the whole

samples were assayed.

 Fig. 3. Demonstration of the ion concentrations of the calibration and test

set solutions in three-dimensional space.

RESULTS AND DISCUSSION

According to Vlasov et al.25 applying sensor arrays with

low selectivity can results in multicomponent analysis, which

can be superior to that performed by using selective sensors.

The non-specific sensors of the array have to present high

stability and cross-sensitivity to different species. The cross-

sensitivity response can be caused by significant differences

in sensing mechanism, non-linearity of sensor responses,

multiple ion interactions or ionic strength effects25. From this

point of view, we include two non-specific sensors in the

present sensor array, one is based on dibenzo-18-crown-6 and

the other is based on monensin. The potentiometric responses

of the mentioned generic electrodes to various cations depending

on the concentration are illustrated in Figs. 4 and 5, respectively.

Fig. 4. Potentiometric response characteristics of the generic electrode

based on dibenzo-18-crown-6

TABLE-1 
MEMBRAN COMPOSITIONS OF THE POTENTIOMETRIC PVC-MEMBRANE ELECTRODES USED IN THIS STUDY 

Electrode Ionophore (w/w) Ionic additive (w/w) Plasticizers (w/w) PVC (w/w) 

Sodium 1.5 % Na+ Ionophore X – 60.0 % DOS 38.5 % 

Potassium 2.0 % K+ Ionophore I 0.5 % KTpClPB 64.70 % DOS 32.8 % 

Ammonium 4.0 % NH4
+ Ionophore I 1.0 % KTpClPB 67% NPOE 28.0 % 

Generic 1 4.0 % Dibenzo-18-Crown-6 – 67.0 % DOS 29.0 % 

Generic 2 3.0 % Monensin – 70.0 % DBS 27.0 % 
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Fig. 5. Potentiometric response characteristics of the generic electrode

based on monensin

After the sensor array was constituted, potential values

versus calibration and test set solutions were gathered from

the sensor array and recorded. Various ANN models were

constituted by using the ion concentrations and related

potential values and model parameters were calculated. In the

constitution of all ANN models, standardized electrode

responses were used as input values of the network. All the

ANN models included single hidden layer. Hyperbolic tangent

function was employed as hidden layer activation function. In

output layer, identity activation function was used. For the

training of the networks, batch training was preferred. Optimi-

zation algorithm was scaled conjugate gradient. In the training

options, initial λ and initial σ values were chosen as 0.0000005

and 0.00005, respectively. While, in some cases, logarithms

of the concentrations were used as output. In the other cases,

concentration values were used directly. In some models,

species were used alone as output. For the determination of

the models which have the best prediction power, RMSEC

and RMSEP were calculated. RMSEC values were calculated

according to the eqns. 4 and 5 as given below16:

2
j,i

m
1i )ĥ(

m

1
RMSEC =Σ= (4)

j,iijj,i ŷyĥ −= (5)

where j,iĥ  are the residuals of the model, yij  and j,iŷ  are the

true and predicted values of y for the ith row and the jth column

of the calibration set, respectively. j,iŷ  is predicted by means

of the model which is set by using the m calibration samples.

RMSEP values were also calculated similarly to RMSEC

according to the eqns. 6 and 7 as given below16:

2
j,i

n
1i )ĝ(

n

1
RMSEP =Σ= (6)

j,iijj,i ŷyĝ −= (7)

where n is the number of samples in the test set, j,iĝ  are the

residuals of the test samples, yij  and j,iŷ  are the correct and

predicted values of y for the ith row and the jth column of the

test set, respectively. j,iŷ  is predicted by means of the model

which is set by using the m calibration samples.

To evaluate the model's performance, RMSEC and

RMSEP values were employed. The model which has the

smallest value for the determined species is agreed to be the

best model. The created models and related RMSEC, RMSEP

and RMSECxRMSEP values are given in Table-2. Some of

the lines in the table are left blank because the logarithm values

of the predicted concentrations are undefined and cannot be

calculated.

The most useful model for the Na+ determination is

the model in which log [Na+] values are used as output

(RMSECxRMSEP = 0.001110). For the test set solutions; the

known Na+ concentrations, predicted Na+ concentrations which

are calculated by means of the mentioned model and related

relative error percentages are given in Table-3.

Similar to the Na+ models, the best model for the K+

determination is the model in which log [K+] values are used

as output (RMSECxRMSEP = 0.002159). The known K+

concentrations, predicted K+ concentrations and related relative

error percentages were given in Table-3.

The best model for the NH4
+ determination is the model

in which log [NH4
+] values are used as output

(RMSECxRMSEP = 0.003776). For the test set solutions; the

known NH4
+ concentrations, predicted NH4

+ concentrations

and related relative error percentages were given in Table-3.

The interested ions were also predicted by using classical

univariate regression to show the prediction efficiency of the

ANN models. For Na+, K+ and NH4
+ ions; the known concen-

trations, the predicted concentrations and related relative error

percentages were given in Table-4. The RMSEP values for

TABLE-2 

PREDICTION ABILITY OF THE VARIOUS ARTIFICIAL NEURAL NETWORKS CONFIGURATIONS 

Predicted species Output RMSEC RMSEP RMSECxRMSEP 

Na+ 

[Na+], [K+], [NH4
+] – – – 

[Na+] 0.1318 0.1376 0.018136 

log[Na
+
], log[K

+
], log[NH4

+
] 0.0422 0.0448 0.001890 

log[Na
+
] 0.0434 0.0256 0.001110 

K
+
 

[Na+], [K+], [NH4
+] – – – 

[K+] – – – 

log[Na
+
], log[K

+
], log[NH4

+
] 0.0444 0.0537 0.002385 

log[K+] 0.0630 0.0342 0.002159 

NH4
+
 

[Na+], [K+], [NH4
+] – – – 

[NH4
+] 0.2451 0.1553 0.038072 

log[Na
+
], log[K

+
], log[NH4

+
] 0.0710 0.0610 0.004333 

log[NH4
+] 0.0828 0.0456 0.003776 
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the Na+, K+ and NH4
+ ions were calculated as 0.0277, 0.0654

and 0.1248, respectively. Artificial neural network models

constructed for Na+, K+ and NH4
+ have better prediction ability

when compared to the univariate calibrations, especially for

NH4
+. NH4

+-selective electrode is one of the ISEs with the lowest

selectivity among the other electrodes used in the array. There-

fore interferents present in the measurement media change

the linear response of the electrode towards NH4
+ ions and the

univariate calibration is not an effective way for correct predic-

tions. However, ANN is a more useful calibration tool in the

case of multicomponent analysis.

Gallardo et al.23 utilized a multisensory array to determine

Na+, K+ and NH4
+ ions simultaneously by using ANN for the

data analysis. Average relative error percentages for Na+ and

K+ ions were calculated as 83 and 32 %, respectively. There

was no information about the average percent relative error of

NH4
+ ion determination, but better prediction was obtained

according to the Na+ and K+ since the RMSEP value is smaller

than Na+ and K+. In another study, Mimendia et al.26 used a

sensor array for simultaneous determination of four ions (K+,

NH4
+, NO3

– and Cl–). ANN was used in order to model the

sensors' response. Average percent relative errors for K+ and

NH4
+ ions were calculated as 17.4 and 38.9 %, respectively. In

our present study, average percent relative errors for Na+, K+

and NH4
+ were calculated as 5.3, 5.9 and 8.5 %, respectively.

These results show that the offered ANN models can be used

for the more correct prediction of the mentioned ions.

Conclusion

In the present study, a potentiometric multi-sensor array

for the determination of Na+, K+ and NH4
+ ions were constru-

cted and calibrated by using classical univariate and non-

linear multivariate calibration method (ANN). The prediction

abilities of the models were compared to each other. It was

found that ANN calibration models had better prediction ability

in the sensor array applications when compared with the

classical univariate calibration models. The average per cent

relative errors for Na+, K+ and NH4
+ were calculated as 5.2,

13.0 and 19.3 %, respectively by using ANN models.
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TABLE-3 

PREDICTED ION CONCENTRATIONS AND RELATED PER CENT RELATIVE 
ERRORS CALCULATED BY USING MULTIVARIATE CALIBRATIONS 

Solution 
Ion concentrations (mM) and per cent relative errors 

[Na+]real [Na+]pred E (%) [K+]real [K+]pred E (%) [NH4
+]real [NH4

+]pred E (%) 

1-a 0.25 0.23 -8.3 6.00 5.85 -2.4 7.00 6.00 -14.3 

1-b 0.25 0.24 -4.5 6.00 6.02 0.3 7.00 6.73 -3.9 

1-c 0.25 0.26 4.4 6.00 5.93 -1.2 7.00 5.74 -18.0 

1-d 0.25 0.24 -4.7 6.00 5.77 -3.8 7.00 6.52 -6.9 

1-e 0.25 0.26 3.6 6.00 5.81 -3.2 7.00 6.66 -4.9 

2 0.11 0.12 9.6 1.20 1.50 25.0 0.15 0.15 -0.7 

3 0.43 0.42 -1.9 0.18 0.16 -6.4 0.50 0.46 -8.6 

4 1.00 1.08 8.3 4.00 4.29 7.2 4.00 4.46 11.5 

5 1.70 1.76 3.8 0.85 0.88 3.0 0.25 0.25 1.9 

6 0.60 0.66 10.7 5.00 5.27 5.4 1.00 1.17 16.6 

7 8.50 8.90 4.7 0.15 0.16 9.0 2.50 2.65 6.2 

8 3.50 3.58 2.4 0.35 0.32 -8.1 0.43 0.37 -14.1 

9 6.00 5.84 -2.6 1.00 0.98 -2.1 2.00 1.95 -2.4 

 

TABLE-4 
PREDICTED ION CONCENTRATIONS AND RELATED PER CENT RELATIVE 

ERRORS CALCULATED BY USING UNIVARIATE CALIBRATIONS 

Solution 
Ion concentrations (mM) and per cent relative errors 

[Na+]real [Na+]pred E (%) [K+]real [K+]pred E (%) [NH4
+]real [NH4

+]pred E (%) 

1-a 0.25 0.25 -1.9 6.00 5.59 -6.8 7.00 6.40 -8.6 

1-b 0.25 0.26 2.3 6.00 5.59 -6.8 7.00 6.75 -3.6 

1-c 0.25 0.28 11.3 6.00 5.84 -2.7 7.00 6.07 -13.3 

1-d 0.25 0.26 2.3 6.00 4.92 -18.0 7.00 6.07 -13.3 

1-e 0.25 0.28 11.3 6.00 5.14 -14.4 7.00 6.40 -8.6 

2 0.11 0.12 8.1 1.20 1.06 -11.5 0.15 0.16 9.1 

3 0.43 0.46 8.4 0.18 0.15 -14.5 0.50 0.28 -44.3 

4 1.00 1.02 2.4 4.00 3.50 -12.5 4.00 3.57 -10.8 

5 1.70 1.69 -0.3 0.85 0.66 -21.8 0.25 0.19 -23.2 

6 0.60 0.67 12.1 5.00 4.15 -17.0 1.00 1.17 16.9 

7 8.50 8.37 -1.6 0.15 0.16 4.1 2.50 1.79 -28.5 

8 3.50 3.46 -1.1 0.35 0.30 -15.5 0.43 0.24 -44.1 

9 6.00 5.73 -4.5 1.00 0.82 -17.8 2.00 1.45 -27.7 
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