
INTRODUCTION

In the flavour and fragrance industry, heterocyclic

compounds are of great interest because of their widespread

occurrence in food flavours and their valuable organoleptic

characteristics. Even though these heterocyclic aroma chemi-

cals are found only in tiny amounts in foods, their powerful

odors and low odor thresholds make them key in boosting

flavours and fragrances. The main heterocyclic aroma chemicals

are almost three groups, which include oxygen-, sulfur- and

nitrogen containing rings, respectively. The oxygen-containing

heterocyclic aroma chemicals belong to the oxirane, furan,

pyran and oxepine groups. The sulfur-containing aroma

chemicals belong to the thiophene family and, together with

nitrogen, to the thiazole and dithiazine systems. The nitrogen-

containing aroma chemicals belong to pyrrole, indole, pyridine,

quinoline, pyrazine and quinoxaline systems and, together

with sulfur, as mentioned above, the thiazole and dithiazine

families1.

Over the years, a lot of work has been done to explore the

mysteries of the sense of odors since humans and animals can

sense by smell different odors. As is well known, both of the

theory of stereochemistry and the method of structure-func-

tional groups are widely supported. They hold the view that

odors are not only associated with the shape or the size, but
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also with the nature and content of functional groups and their

location in the whole molecule. So, to understand the human

chemosensory perception, it is necessary not only to have the

knowledge of the relevant structural and physicochemical

properties of chemicals, but also necessary to explore the

relationships between the characteristics of compounds and

their properties. Among the different types of properties,

odor thresholds value is an important biological property of

odorant molecules. Further, structure-odor relationships are

of great help to screen out new fragrance or synthesize new

ones artificially.

Until now, there have been a number of studies on the

correlations of odor detection thresholds (ODT) with various

properties of odorant. The study by Laffort and Patte2 was the

first to employ a physicochemical analysis of these compounds.

Mihara and Masuda3 used a two-term regression equation to

model the logarithm of the odor threshold of 60 di-substituted

pyrazines. Seeman et al.4 studied the odor profile of structurally

similar pairs of 1,3-dialkylbenzenes and 2,6-dialkylpyridines

as a function of the accessibility of the nitrogen atom and steric

hindrance. Winter related the activity of a series of ambergris-

type odorants to a minimum accessible surface area about the

ether oxygen in the molecule5. Edwards and Jurs6 also used

discriminant analysis to study the ability of odorant molecules

to stimulate activity of the enzyme adenylate cyclase. Latter,



computer assisted statistical methods have been used to study

the odor thresholds of two sets of odor active molecules by

the same authors. One data set included 53 aliphatic alcohols.

The other data set included 74 mono and di-substituted

pyrazine derivatives7. Chastrette8 has reviewed the former

works up to 1996. Then, Yamanaka9 showed that odor thresh-

olds for several homologous series could be correlated with

the odorant activity coefficient in water. Abraham et al.10

performed a model for odor thresholds for a series of 64

compounds, including esters, aldehydes, ketones, alcohols,

carboxylic acids, aromatic hydrocarbons, terpenes and some

of other volatile organic compounds. Ivanciuc11 has investi-

gated the application of support vector machines (SVM) to

the classification of 98 tetra-substituted pyrazines by five

theoretical descriptors. Hau et al.12 studied the odor thresholds

of volatile organic compounds by QSAR approach. Tan and

Siebert13 also gave a QSAR study on flavour thresholds in

beer of different organic compounds such as alcohol, ester,

aldehyde and ketone. The aroma quality and the threshold

values of some pyrazines was predicted using artificial neural

networks by Wailzer et al.14. Latter, threshold of pyrazine

derivatives were also studied by Zakarya et al.15. In our previous

study, we have given a QSPR study on 74 pyrazine derivatives

using different statistical methods, such as MLR, RBFNN and

SVM16 and we also performed a classification study of the

fragrant properties of chemical compounds based on the

support vector machine and linear discriminant analysis17.

All of the former studies prompted us to go on carrying

out a theoretical study on the odor threshold of the very

important oxygen and nitrogen containing heterocyclic com-

pounds in the flavour and fragrance industry. To the best of

our knowledge, there are no general QSPR studies on this topic

of these special kinds of compounds. The aim of the present

work is to devise quantitative structure-property relationships

that could be used to correlate odor thresholds with relevant

physicochemical properties and thereby to perform prediction

of such thresholds. The structural factors affecting the com-

pounds' odor thresholds values are also investigated.

EXPERIMENTAL

Data set: The experimental value of the odor thresholds

is not so many. The data set of the 50 oxygen and nitrogen

containing heterocycles was collected from a handbook18.

Concentration unit of the experimental odor threshold is ppm

and it is by volume. Of these compounds, 32 are nitrogen-

containing and 18 are oxygen-containing heterocycles. A

complete list of the compounds and their corresponding odor

thresholds is in Table-1. As usually did by QSPR study, the

entire set of compounds was divided into two subsets: a training

set, whose information was used to build the models and an

external test set, consisting of molecules not found in the

training set, which was used to validate the models once they

were built. Members of each set were assigned randomly. In

Table-1, the serial number 1-26 in the training set and 1-6

in the external test set are nitrogen-containing heterocycles;

the serial number 27-40 in the training set and 7-10 in the

external test set are oxygen-containing ones. The training set

consisted of 40 compounds (80 %) and the test set contained

10 compounds (20 %). In addition, each set contained roughly

the same percentage of oxygen-containing compounds (training

set = 25.0 %, test set = 28.6 %).

Molecular structure optimization and descriptor

generation: To obtain a QSPR model, the compounds must

be represented by molecular descriptors that retain as much

structure information as possible. Here five classes of descrip-

tors i.e., constitutional, topological, geometrical, electrostatic

and quantum chemical descriptors, were calculated. The

descriptors were generated as follows: The compounds were

drawn using ISIS Draw 2.419 and pre-optimized using the

molecular mechanics force field method (MM+) available in

HyperChem 7.020. The molecular structures were then opti-

mized using the Polak-Ribiere algorithm until the root mean

square gradient was equal to or less than 0.001. A more precise

optimization was done with a semi-empirical PM321 method

in MOPAC22. Thereafter, CODESSA PRO23,24 was used to

calculate the above five types of molecular descriptors. Alto-

gether, 480 descriptors were calculated for each of the 50

heterocyclic compounds studied.

Selection of molecular descriptors: A successful QSPR

model depends on suitable descriptors selection. If molecular

structures are represented by improper descriptors, they will

not lead to reasonable predictions. The process of features

selection entails pruning the descriptors pool through the

heuristic method (HM) available in the framework of the

CODESSA program23,24. Heuristic method can either quickly

give a good estimation about what quality of correlation to

expect from the data or derive several best regression models.

Besides, it will demonstrate which descriptors have bad or

missing values, or are insignificant (from the standpoint of a

single-parameter correlation) or are highly inter-correlated.

The detailed discussion about the heuristic method can be

found in Ref24. Here, only the main steps of this method are

given in the following: The heuristic method of the descriptor

selection proceeds with a pre-selection of descriptors by elimi-

nating those descriptors that are not available for each structure;

descriptors having a small variation in magnitude for all struc-

tures; descriptors that give a F-test's value below 1.0 in the

one-parameter correlation; and descriptors whose t-values are

less than the user-specified value, etc. This procedure orders

the descriptors by decreasing correlation coefficient when used

in one-parameter correlations. Following the pre-selection of

descriptors, multiple linear regression (MLR) models are

developed in a stepwise procedure.

Methodology of modeling

Theory of MLR and RBFNN: MLR analysis and

RBFNN artificial neural networks were used to correlate the

descriptors and the odor thresholds values of the 50 hetero-

cyclic compounds. The forward stepwise multiple regression

analysis, a commonly used method in QSPR study, was

employed to establish the quantitative regression models25,26.

The general purpose of it is to obtain a mathematical function

(eqn. 1) that best describes the desired activity, Y, as a linear

combination of the X variables (the molecular descriptors),

with the regression coefficients bn. Such coefficients are to be

optimised by means of MLR analysis using the chosen training

set compounds.
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The theory of RBFNN has been extensively presented in

some works27,28. Here, only a brief description of the RBFNN

principle was given. Fig. 1 shows the basic network architecture.

It consists of an input, a hidden and an output layer. The input

layer does not process the information; it only distributes the

input vectors to the hidden layer. The hidden layer of RBFNN

consists of a number of RBF units (nh) and bias (bk). Each

hidden layer unit represents a single radial basis function, with

associated center position and width. Each neuron on the hidden

layer employs a radial basis function as a nonlinear transfer

function to operate on the input data. The most often used

RBF is a Gaussian function that is characterized by a center

(cj) and a width (rj). The RBF function performs the nonlinear

transformation by measuring the Euclidean distance between

the input vector (x) and the radial basis function center (cj).

The RBF in the hidden layer as given below:

TABLE-1 

EXPERIMENTAL AND CALCULATED log T FOR TRAINING AND TEST SET 

No. 
Name Experimental Calculated log T 

Training set log T MLR RBFNN SVM 

1 4-Butyl-5-propylthiazole -2.523 -2.1894 -2.0624 -1.6960 

2 2-Ethyl-3-methoxypyrazine -0.398 0.2316 0.0455 0.2291 

3 2-Pentylpyridine -0.222 0.2800 0.1294 0.3721 

4 1-(4,5-Dihydrothiazol-2-yl)ethanone 0.114 -0.2674 0.0408 -0.0501 

5 2-Isobutylthiazole 0.301 -0.2069 -0.1138 -0.1082 

6 2-(Methylthio)benzo[d]thiazole 0.699 0.0518 0.5699 -0.1273 

7 2,6-Diethylpyrazine 0.778 2.3299 2.0988 2.3345 

8 2-Isobutyl-5-methoxypyrazine 1 0.6085 0.9025 0.8112 

9 2-Isopropyl-5-methoxypyrazine 1 0.8946 1.037 0.9701 

10 2-Ethyl-3-methoxypyrazine 1.041 1.3735 0.8436 1.2604 

11 Pyridine 1.477 0.9529 1.4045 0.6510 

12 2-Isobutyl-3-methylpyrazine 1.544 1.3633 0.7458 1.3498 

13 2-Methyl-5-vinylpyridine 1.602 0.9217 0.3753 0.7950 

14 2-Ethyl-5-methylpyrazine 2 2.6954 3.2579 2.7642 

15 2-Ethyl-3-methylpyrazine 2.114 1.6747 1.4365 1.6059 

16 2,3-Dimethylpyrazine 2.602 2.3363 2.2427 2.1992 

17 2,3,5-Trimethylpyrazine 2.602 1.2942 1.368 1.3973 

18 2-Methoxypyrazine 2.845 4.187 4.6367 3.7426 

19 2,3,5,6-Tetramethylpyrazine 3 2.3939 2.8236 2.1744 

20 2-Pentylpyrazine 3 3.3453 2.8891 3.2499 

21 2,5-Dimethylpyrazine 3.255 3.7805 3.6651 3.6848 

22 1-Ethyl-1H-pyrrole-2-carbaldehyde 3.301 2.5759 3.4494 2.4750 

23 2-Ethylpyrazine 4.778 4.1451 3.981 3.8563 

24 2-Methylpyrazine 5 4.6999 4.5243 4.3308 

25 5-Methyl-1H-pyrrole-2-carbaldehyde 5.041 4.4891 3.9481 4.2452 

26 Pyrazine 5.699 5.5040 5.8141 4.8823 

27 (R)-4-Hydroxy-2,5-dimethylfuran-3(2H)-one -1.4 0.9137 -0.4008 1.2062 

28 2-(Methylthio)furan -1.4 0.9070 -0.3298 0.6039 

29 3-Methyl-2-vinylfuran -0.3 1.1665 0.7579 1.2025 

30 3,4-Dimethylthiophene 0.11 -0.2266 -0.1753 -0.4873 

31 2-Vinylfuran 3 4.0805 3.5843 3.8263 

32 2-Pentylfuran 3.18 2.0622 3.2531 2.3531 

33 4,4-Dimethyl-1,3-dioxolane 3.4 3.6946 3.1843 3.0484 

34 (Furan-2-yl)methanol 3.48 2.8324 3.1658 2.7804 

35 2-Propylfuran 3.78 2.8309 3.4524 2.9939 

36 2-Ethylfuran 3.9 2.8358 2.9733 2.9171 

37 5-Methylfuran-2-carbaldehyde 4 3.4723 4.1866 3.1725 

38 3-Hydroxy-2-methyl-4H-pyran-4-one 4.54 2.8506 4.001 2.8936 

39 5-(Hydroxymethyl)furan-2-carbaldehyde 5.3 5.6319 4.5598 5.2853 

40 1-(Furan-2-yl)-2-hydroxyethanone 5.3 6.0226 6.2916 5.6291 

Test set 

1 2-Hexyl-3-methoxypyrazine -3 0.1119 -0.7148 0.3403 

2 3-Isobutyl-2-methoxy-5-methylpyrazine 0.415 -0.8316 -1.1538 -0.5038 

3 2,5-Diethylpyrazine 1.301 2.6981 2.9093 2.7731 

4 2-Methoxy-3-methylpyrazine 2.176 2.0006 2.0456 1.8304 

5 2,6-Dimethylpyrazine 3.176 2.5975 2.5491 2.4831 

6 1-(1H-Pyrrol-2-yl)ethanone 5.301 5.4257 5.8248 4.9989 

7 4-Methoxy-2,5-dimethylfuran-3(2H)-one -1.52 0.8823 -0.0241 0.8530 

8 1,3,3-Trimethyl-2-oxa-bicyclo[2.2.2]octane 1.08 4.2629 2.8822 3.1557 

9 2-Methylfuran 3.54 3.5674 2.9453 3.5502 

10 1-(Furan-2-yl)ethanone 5.04 4.9649 6.3127 4.3729 
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In this equation, hj is the notation for the output of the jth

RBF unit. For the jth RBF, cj and rj are the center and the spread,

respectively. The operation of the output layer is linear, which

is given below

( ) ( ) k

n

1j

jkjk bXhwXy
k

+=∑
=

(3)

where yk is the kth output unit for the input vector x, wkj is the

weight connection between the kth output unit and the jth hidden

layer unit and bk is the bias. It can be seen from eqns. 2 and 3,

designing a RBFNN involves the selection of centers, number

of hidden layer units, width and weights. There are various

ways for selecting the centers, such as random subset selection,

K-means clustering, orthogonal least squares learning algo-

rithm, RBF-PLS, etc. The widths of the radial basis function

networks can either be chosen the same for all the units or can

be chosen differently for each unit. In this paper, considerations

were limited to the Gaussian functions with a constant width,

which was the same for all units. The adjustment of the connec-

tion weight between hidden layer and output layer is performed

using a least-squares solution after the selection of centers

and width of radial basis functions.

The overall performance of RBFNN is evaluated in terms

of a root-mean-squared error (RMS) according to the equation

below:
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k
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2
kk

n

ŷy

RMS

k

∑
=

−

= (4)

where yk is the desired output and kŷ  is the actual output of

the network; nk is the number of compounds in analyzed set.

The performance of RBFNN is determined by the values of

following parameters: the number nh of radial basis functions,

the center cj and the width rj of each radial basis function, the

connection weight wkj between the jth hidden layer unit and

the kth output unit. The centers of RBFNN are determined with

the forward subset selection method proposed by Orr29,30. The

optimal width was determined by experiments with a number

of trials by taking into account the leave-one-out (LOO) cross-

validation error. The one that gives a minimum LOO cross-

validation error is chosen as the optimal value.

Theory of support vector machines: Support vector

machines (SVM) are gaining popularity due to many attractive

features and promising empirical performance31. It can solve

high-dimension problems and therefore avoid the "curse of

dimensionality". A detailed description of the theory of SVM

can be referred in several excellent books and tutorials32,33.

The basic idea and its performance are simply introduced here.

SVM are generated by a two-step procedure: first, the sample

data vectors are mapped to a very high-dimensional space.

The dimension of this space is significantly larger than that of

the original data space. Then, the SVM algorithm finds a

hyperplane in this space with the largest margin separating

classes of data. SVM can also be applied to regression by the

introduction of an alternative loss function. The decision

function of regression is as follows:

( ) ( )













+α= ∑

=

l

1i
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The overall performances of SVM were also evaluated in

terms of root mean square error (RMS), which was showed

above, eqn. 4.

For each model, the goodness of the fit was assessed by

examining the determination coefficient (R2), the adjusted

determination coefficient (R2
adj), Fisher's statistics (F) as well

as the standard deviation (s2)34. The robustness of the models

was evaluated by means of internal cross-validation (CV),

specifically by the leave-one-out (LOO) and the leave-n-out

(LNO) techniques35. The estimated measure of the predictive

ability of the model was determined also by the R2 and s2 and

F values. This procedure was implemented in the MATLAB

software. In addition, the ratio between the number of compounds

in the training set and the number of adjustable parameters in

the model36, known as the ρ statistics was added.

RESULTS AND DISCUSSION

Results of MLR: The MLR was used to develop the linear

model for the prediction of odor threshold using all the descrip-

tors calculated. Firstly, the heuristic method was used to reduce

the pool of descriptors. The descriptors were reduced from

480-180. Secondly, various subset sizes were investigated to

determine the optimum number of descriptors. To determine

the optimum number of descriptors, the heuristic correlations

provided the optimal equations for different numbers of

descriptors in the range of 1-9. Plot of R2, R2
cv and S2 values

against the number of descriptors (Fig. 2) gave guidance

regarding the number of descriptors to retain in the model.

It can be seen from Fig. 2 that R2 and R2
cv rise steeply

with the number of parameters increasing from 1-9, while S2

decreases steeply. In the present study, the best correlation

equation with six descriptors was used for the analysis. A detailed

description of the linear model was summarized in Table-2.
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Thus, ρ statistics of the new linear models is 6.8, which is

much higher than the reference value 4, indicating that the

model is proper36.

The correlation matrix of the six selected descriptors was

shown in Table-3. From Table-3, it can be seen that the linear

correlation coefficient value of each of the two descriptors is

< 0.80, which means the descriptors are not collinear24,37. With

the external test set, the prediction results were obtained. The

statistical parameters were R2 = 0.648, F = 14.708, RMS =

1.7165. The predicted versus observed log T was shown in

Table-1. Fig. 3 shows the predicted versus observed log T

values for all of the compounds studied.
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Fig. 3. Calculated versus experimental log T by MLR

TABLE-3 
CORRELATIONS MATRIX OF THE SIX 
DESCRIPTORS USED IN THE MODEL 

 IA Td Hz2 HC FN2 R+ 

IA 1.000 – – – – – 

Td 0.326 1.000 – – – – 

Hz2 0.456 0.132 1.000 – – – 

HC 0.330 0.189 0.112 1.000 – – 

FN2 0.102 -0.003 0.566 0.095 1.000 – 

R+ -0.534 -0.306 -0.328 0.259 0.254 1.000 

Note: R+:RPCG Relative positive charge (QMPOS/QTPLUS) 

[Zefirov's PC]; FN2 : FNSA-2 Fractional PNSA (PNSA-2/TMSA) 

[Quantum-Chemical PC]; HC : Count of H-donors sites [Quantum-

Chemical PC]; Hz2 : HACA-1/TMSA [Zefirov's PC];Td: Tot 

hybridization comp. of the molecular dipole; IA: Principal moment of 

inertia A. 

 
Results of RBFNN: From the above result of MLR, we

can see that the result is not so satisfied, especially for the

external test set. So the nonlinear statistic method, RBFNN

was used to develop a non-linear model based on the same

subset of descriptors to see whether the results could be

improved. The parameter that influences the performance of

RBFNN was optimized. The selection of the optimal width

value for RBFNN was performed by systemically changing

its value in the training step. The value that gives the best leave-

one-out (LOO) cross-validation result was used in the model.

For this data set, the optimal value was determined as 4.00.

The corresponding number of centers (hidden layer nodes) of

RBFNN is 13. The predicted results of the nonlinear models

were shown in Table-1 and Fig. 4. The obtained model had a

square correlation coefficient R2 = 0.8767, F = 269.98, with

an RMS of 0.7152 for the training set. The statistical para-

meters of the test set were R2 = 0.7746; F = 27.481 and RMS

= 1.3570.

Results of SVM: The same as the RBFNN, the selection

of the parameters for SVM was performed by systemically

changing their value using the training step. The robustness of

the models and their internal predictive ability were evaluated

based on leave-one-out (LOO) cross-validation. The value,

which gives the best LOO cross-validation result, was used in

the model. The overall performances of SVM were evaluated

in terms of RMS. The γ, ε and C for this data set were finally

fixed to 0.003, 0.4 and 100, respectively. The predicted results

of the nonlinear models were shown in Table-1 and Fig. 5.

The SVM model gave similar results to MLR, that is, R2 =

0.8023, RMS = 0.9271 for the training set and R2 = 0.7033

and RMS = 1.5888 for the test set.

Comparison and validation of the MLR, RBFNN and

SVM models: Comparison of the correlation models obtained

TABLE-2 
DESCRIPTORS, COEFFICIENTS, STANDARD ERROR AND t-TEST VALUES OF THE MULTIPLE LINEAR MODEL 

 Coefficients Standard error t-test Descriptors 

0 5.56 1.49 3.72 Intercept 

1 -1.91 0.34 -5.66 Tot hybridization component of the molecular dipole 

2 -0.29 0.07 -4.37 Count of H-donors sites [quantum-chemical PC] 

3 -7.76 2.29 -3.40 FNSA-2 fractional PNSA (PNSA-2/TMSA) [qantum-chemical PC] 

4 -34.70 8.65 -4.01 RPCG Relative positive charge (QMPOS/QTPLUS)[Zefirov's PC] 

5 15.60 4.02 3.87 Principal moment of inertia A 

6 59.70 27.40 2.18 HACA-1/TMSA [Zefirov's PC] 

N = 40; R2 = 0.8012; F = 22.17; RMS = 1.0011. 
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by MLR, RBFNN and SVM, it is clear that the whole perfor-

mance of RBFNN is better than that obtained by MLR and

SVM. To further validate the models built, a fivefold cross-

validation algorithm was applied for validation of the prediction

results. In this process, the training set was then split into four

parts: A (1, 5, 9, 13, ...), B (2, 6, 10, ...), C (3, 7, 11, ...), D (4,

8, 12, ...). The test set was defined as part E and each part

contains 10 compounds. The remainder of the procedure was

repeated five times. In each run, a different one of the five

parts was kept apart, while the other four parts were used to

construct all of the MLR, RBFNN and SVM models. The part

that was kept separate was then used to verify the model. The

reported RMS and R2 for the training and test set for all of the

models and for each of the five training-test set splits was also

shown in Table-4. The results shown in Table-4 disclose an

average training quality of R2 = 0.7721, RMS = 1.1336 and an

average predicting quality of R2 = 0.6776, RMS = 1.3127 for

MLR model. The results of the RBFNN model were R2 =

0.7839, RMS = 0.9970 for training set; and an average

predicting quality of R2 = 0.7268, RMS = 1.2281, which proves

that the proposed model has a relatively satisfactory statistical

stability and validity. While to the SVM model, the results

were: R2 = 0.7777, RMS = 1.1034 for training set and an

average predicting quality of R2 = 0.6615, RMS = 1.3347.

The results were similar to those of MLR. From the average

results of each model, we can see that the models have a

relatively satisfactory statistical stability and validity.

Discussions of the input parameters: As is well known,

the factors influencing odors property is complex. Fragrance

molecules enter through our nostrils then interact with receptors

in the olfactory epithelium. The pungent sensations arisen from

the activation of receptors are present within the free endings

of the trigeminal nerve38. The process is not only dependent

on the characteristic of physiological factors, but also on the

physicochemical properties and the molecular structure. From

the viewpoint of chemistry, property is determined by structure

if the experimental condition is same. In this study, we try to

seek the structure factors that influence the odor threshold of

oxygen and nitrogen containing heterocycles. The six descriptors,

which encode different structure feature of each compound,

involved in the model can be classified as follows: (i) four as

electrostatic descriptors; (ii) one as quantum chemical descriptor;

(iii) one as geometrical descriptor.

RPCG relative positive charge (QMPOS/QTPLUS)

[Zefirov's PC] (RPCG), an electrostatic descriptor, is a charged

partial surface area descriptor. It was defined as the partial

charge of the most positive atom divided by the total positive

charge of the molecule and it represents the effect of the polar

intermolecular interactions. The coefficient of the descriptor

is negative. HACA-1/TMSA [Zefirov's PC] (HACA-1),

another electrostatic descriptor, describes the ability of the

compound to act as a hydrogen bond acceptor. HACA is

defined as the sum of solvent accessible surface area of

hydrogen bonding acceptor atoms in the molecule38,39. The

minimum value of HACA is 0 and the maximum value is 2. 1

is for our dataset. The count of H-donors sites [ZefiroV's PC]

(HD) distinguishes the molecules according to the number of

hydrogen donor sites that are capable of donating a hydrogen

to the surrounding media. Thus it indicates noncovalent

hydrogen bonds action. As expected, hydrogen bond descriptors

TABLE-4 
VALIDATION OF CORRELATIONS FOR THE MLR,RBFNN AND SVM MODELS 

Training 

subset 

R2 RMS Test 

subset 

R2 RMS 

MLR RBFNN SVM MLR RBFNN SVM MLR RBFNN SVM MLR RBFNN SVM 

A+B+C+D 0.8012 0.8767 0.8023 1.0011 0.7165 0.9271 E 0.6476 0.7746 0.7033 1.7165 1.3570 1.5888 

A+B+C+E 0.7664 0.7396 0.7572 1.1620 1.1142 1.0925 D 0.6563 0.6406 0.6063 1.2138 1.2441 1.2762 

A+B+D+E 0.7937 0.7790 0.7963 1.0928 1.0274 0.9994 C 0.5107 0.6940 0.4670 1.4504 1.3258 1.5050 

A+C+D+E 0.7660 0.7807 0.7843 1.1804 1.0380 1.0565 B 0.7154 0.7096 0.6869 1.3146 1.3533 1.3685 

B+C+D+E 0.7323 0.7436 0.7486 1.2250 1.0890 1.1114 A 0.8589 0.8181 0.8433 0.8681 0.9285 0.9351 

Average 0.7721 0.7839 0.7777 1.1336 0.9970 1.0374 – 0.6776 0.7268 0.6615 1.3127 1.2281 1.3347 
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are of major importance in modeling the transfer action. The

hydrogen bond descriptors include simple integer examples

such as the counts of hydrogen acceptor or donor sites together

with the ratio of the maximal number of hydrogen bond donor

or acceptor sites in a molecule to the corresponding minimal

value, (HA, HD)min/max and advanced hydrogen bond

descriptors expressed in the form of partial surface area. The

latter include the hydrogen acceptor charged surface area

(HACA) and the hydrogen donor charged surface area (HDCA).

In our model, they have contrary coefficients. HACA-1 has a

positive coefficient, while HD has a negative one. Fractional

negative charge weighted surface area (FNSA-2) means total

charge weighted negative surface area dived by total molecular

surface area. Because of its negative coefficient in the linear

model, increasing this descriptor also decreases the log T

values.

The quantum chemical descriptor used most frequently

is the total hybridization component of the molecular dipole

(Dthc). The descriptor contributes negatively to the odor thres-

hold.

The geometrical descriptors describe the size of the mole-

cules and are derived from the three-dimensional coordinates

of the atomic nuclei, the atomic masses and the atomic radii

in the molecule. The descriptor contained in the model that

belongs to this group is principal moment of inertia A (IA).

The moments of inertia characterize the mass distribution in

the molecule. It brings a positive contribution to the odor

threshold. This observation implies that, all things being equal,

increasing the value of this descriptor can lead to the larger

values of odor threshold.

Conclusion

QSPR approach is used to investigate the relationship

between the structures of oxygen and nitrogen containing

heterocyclic compounds and their odor threshold values. The

relatively high R2, low RMS obtained from the models suggest

that the models possesses well predictive ability, which allows

us to estimate the log T of these compounds in cases where

these values are not readily available or not tested easily. Of

these models, MLR is more simple and interpretable and easy

practical to use for the experimental scientists. Also, this paper

provided a simple and straightforward way to predict log T of

a diverse set of compounds from their structures alone and

gave some insight into structural features related to this property

of the compounds.
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